Min Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826801/publications.pdf

Version: 2024-02-01

		81900	8	38630
82	5,165	39		70
papers	citations	h-index		g-index
83	83	83		6024
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon, 2022, 187, 145-152.	10.3	55
2	Boosting selective H ₂ sensing of ZnO derived from ZIF-8 by rGO functionalization. Inorganic Chemistry Frontiers, 2022, 9, 599-606.	6.0	10
3	Revealing the Design Principles of Niâ€Rich Cathodes for Allâ€6olidâ€6tate Batteries. Advanced Energy Materials, 2022, 12, .	19.5	27
4	Regulating Electronic Structure of Singleâ€Atom Catalysts toward Efficient Bifunctional Oxygen Electrocatalysis. Small Methods, 2022, 6, e2101511.	8.6	14
5	Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy, 2022, 96, 107093.	16.0	28
6	Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	21
7	An Ionâ€Conductive Grafted Polymeric Binder with Practical Loading for Silicon Anode with High Interfacial Stability in Lithiumâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	19.5	67
8	Ultrasensitive ethanol sensor based on segregated ZnO-In2O3 porous nanosheets. Applied Surface Science, 2021, 535, 147697.	6.1	52
9	A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy, 2021, 79, 105430.	16.0	85
10	Epoxy and amide crosslinked polarity enhanced polysaccharides binder for silicon anode in lithium-ion batteries. Electrochimica Acta, 2021, 368, 137580.	5.2	11
11	Visualizing Lithium Dendrite Formation within Solid-State Electrolytes. ACS Energy Letters, 2021, 6, 451-458.	17.4	77
12	Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering. Journal of Materials Chemistry A, 2021, 9, 23697-23702.	10.3	83
13	Fundamental air stability in solid-state electrolytes: principles and solutions. Materials Chemistry Frontiers, 2021, 5, 7452-7466.	5.9	22
14	Charge Transport Phenomena in Heterojunction Photocatalysts: The WO ₃ /TiO ₂ System as an Archetypical Model. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9781-9793.	8.0	24
15	9,10-Anthraquinone/K ₂ CuFe(CN) ₆ : A Highly Compatible Aqueous Aluminum-Ion Full-Battery Configuration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8353-8360.	8.0	40
16	Embedding Fe ₃ C and Fe ₃ N on a Nitrogen-Doped Carbon Nanotube as a Catalytic and Anchoring Center for a High-Areal-Capacity Liâ€"S Battery. ACS Applied Materials & Diterfaces, 2021, 13, 20153-20161.	8.0	38
17	Ferromagnetic 1D-Fe ₃ O ₄ @C Microrods Boost Polysulfide Anchoring for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3921-3927.	5.1	22
18	In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries. Electrochimica Acta, 2021, 378, 138106.	5.2	40

#	Article	IF	Citations
19	An Aqueous Binder for High-Areal-Capacity Fe ₃ O ₄ -Based Anodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7201-7208.	5.1	23
20	Dualâ€Carbon Confined SnP ₂ O ₇ with Enhanced Pseudocapacitances for Improved Li/Naâ€Ion Batteries. ChemElectroChem, 2021, 8, 2708-2714.	3.4	6
21	MOF-Derived Porous Hollow Co ₃ O ₄ @ZnO Cages for High-Performance MEMS Trimethylamine Sensors. ACS Sensors, 2021, 6, 2613-2621.	7.8	63
22	Epoxy Cross-Linking Enhanced the Toughness of Polysaccharides as a Silicon Anode Binder for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 37704-37712.	8.0	13
23	Controllably Electrodepositing ZIF-8 Protective Layer for Highly Reversible Zinc Anode with Ultralong Lifespan. Journal of Physical Chemistry Letters, 2021, 12, 9055-9059.	4.6	17
24	Peach gum as an efficient binder for high-areal-capacity lithium–sulfur batteries. Sustainable Materials and Technologies, 2021, 30, e00334.	3.3	3
25	A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries. Sustainable Materials and Technologies, 2021, 30, e00333.	3.3	18
26	Carbon dot-modified silicon nanoparticles for lithium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1603-1610.	4.9	11
27	A new battery process technology inspired by partially carbonized polymer binders. Nano Energy, 2020, 67, 104234.	16.0	52
28	Atomic Platinum Anchored on Fe-N-C Material for High Performance Oxygen Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 165-168.	2.0	4
29	Constructing a Phosphating–Nitriding Interface for Practically Used Lithium Metal Anode. , 2020, 2, 1-8.		14
30	Millimeter Silicon-Derived Secondary Submicron Materials as High-Initial Coulombic Efficiency Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10255-10260.	5.1	14
31	Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia. Journal of Materials Science: Materials in Electronics, 2020, 31, 14165-14173.	2.2	8
32	Electrospinning MoS2-Decorated Porous Carbon Nanofibers for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11893-11899.	5.1	20
33	Construction of a Flexible Nb ₂ O ₅ /Carboxyl Multiwalled Carbon Nanotube Film as Anode for Lithium and Sodium Storages. ACS Applied Energy Materials, 2020, 3, 11841-11847.	5.1	14
34	Adhesive Sulfide Solid Electrolyte Interface for Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54876-54883.	8.0	30
35	Preâ€activation and Defects Introduced via Citric Acid to Mitigate Capacity and Voltage Fading in Liâ€rich Cathode. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1285-1291.	1.2	6
36	3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. Journal of Power Sources, 2020, 473, 228588.	7.8	56

#	Article	IF	CITATIONS
37	Platinum Atomic Clusters Embedded in Defects of Anatase/Graphene for Efficient Electro- and Photocatalytic Hydrogen Evolution. ACS Applied Materials & Emp; Interfaces, 2020, 12, 40204-40212.	8.0	27
38	Anchoring Polyiodide to Conductive Polymers as Cathode for High-Performance Aqueous Zinc–lodine Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 14280-14285.	6.7	64
39	Rational Design of Coâ€NiSe ₂ @Nâ€Doped Carbon Hollow Structure for Enhanced Li–S Battery Performance. Energy Technology, 2020, 8, 2000302.	3.8	14
40	Accommodation of Silicon in an Interconnected Copper Network for Robust Liâ€lon Storage. Advanced Functional Materials, 2020, 30, 1910249.	14.9	46
41	Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies, 2020, 24, e00158.	3.3	10
42	Silicon Anode with High Initial Coulombic Efficiency by Modulated Trifunctional Binder for Highâ€Arealâ€Capacity Lithiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 1903110.	19.5	221
43	Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy, 2020, 73, 104766.	16.0	46
44	Selective Adsorption and Electrocatalysis of Polysulfides through Hexatomic Nickel Clusters Embedded in N-Doped Graphene toward High-Performance Li-S Batteries. Research, 2020, 2020, 5714349.	5.7	16
45	Sulfurâ€/Nitrogenâ€Rich Albumen Derived "Selfâ€Doping―Graphene for Sodiumâ€lon Storage. Chemistry - A European Journal, 2019, 25, 14358-14363.	3.3	12
46	Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries. Journal of Central South University, 2019, 26, 1426-1434.	3.0	6
47	An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Materials Today Energy, 2019, 13, 323-330.	4.7	73
48	Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery. ACS Applied Polymer Materials, 2019, 1, 1965-1970.	4.4	37
49	Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy, 2019, 63, 103849.	16.0	106
50	Effect of oxygen deficiency on the excited state kinetics of WO ₃ and implications for photocatalysis. Chemical Science, 2019, 10, 5667-5677.	7.4	97
51	Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy and Environmental Science, 2019, 12, 1512-1533.	30.8	402
52	Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46800-46807.	8.0	44
53	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6959-6966.	10.3	68
54	High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Research, 2018, 11, 490-498.	10.4	92

#	Article	IF	Citations
55	Gas-phase synthesis of hybrid nanostructured materials. Nanoscale, 2018, 10, 22981-22989.	5.6	5
56	Conductive molybdenum carbide as the polysulfide reservoir for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17142-17147.	10.3	37
57	Chemical Reduction Synthesis and Electrochemistry of Si–Sn Nanocomposites as High-Capacity Anodes for Li-lon Batteries. Journal of Physical Chemistry Letters, 2018, 9, 5130-5134.	4.6	14
58	Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews, 2018, 118, 8936-8982.	47.7	575
59	Optimizing the Activity of Nanoneedle Structured WO ₃ Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5983-5993.	3.1	71
60	Correlation of Optical Properties, Electronic Structure, and Photocatalytic Activity in Nanostructured Tungsten Oxide. Advanced Materials Interfaces, 2017, 4, 1700064.	3.7	25
61	Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy, 2017, 38, 82-90.	16.0	119
62	Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO ₂ Photoanode: A Rate Law Analysis. ACS Catalysis, 2017, 7, 4896-4903.	11.2	105
63	Facile Synthesis and Electrochemistry of Si-Sn-C Nanocomposites for High-Energy Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1378-A1383.	2.9	7
64	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study. Advanced Functional Materials, 2017, 27, 1605413.	14.9	115
65	Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy, 2017, 40, 559-565.	16.0	83
66	Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites. Optical Materials, 2017, 72, 529-532.	3.6	6
67	Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31741-31745.	8.0	45
68	Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS Catalysis, 2016, 6, 3558-3568.	11.2	74
69	Conductive Polymer Binder-Enabled SiO–Sn _{<i>x</i>} Co _{<i>y</i>} C _{<i>z</i>} Anode for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13373-13377.	8.0	28
70	Where Do Photogenerated Holes Go in Anatase:Rutile TiO ₂ ? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. Journal of Physical Chemistry A, 2016, 120, 715-723.	2.5	128
71	<i>Acacia Senegal</i> àê"Inspired Bifunctional Binder for Longevity of Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500878.	19.5	223
72	Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD). Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 869-877.	0.8	36

#	Article	IF	CITATIONS
73	Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy, 2015, 12, 178-185.	16.0	236
74	Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2036-2042.	10.3	53
75	Multifunctional SA-PProDOT Binder for Lithium Ion Batteries. Nano Letters, 2015, 15, 4440-4447.	9.1	97
76	Anchoring ultra-fine TiO ₂ â€"SnO ₂ solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9700-9706.	10.3	47
77	Plasticized Polymer Composite Single-Ion Conductors for Lithium Batteries. ACS Applied Materials & 2015, 7, 19494-19499.	8.0	31
78	Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application. Nano Letters, 2015, 15, 7927-7932.	9.1	121
79	SnO ₂ decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries. RSC Advances, 2014, 4, 50148-50152.	3.6	43
80	Directional synthesis of tin oxide@graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10211-10217.	10.3	54
81	An environmentally benign LIB fabrication process using a low cost, water soluble and efficient binder. Journal of Materials Chemistry A, 2013, 1, 11543.	10.3	42
82	Photocatalytic Synthesis of TiO ₂ and Reduced Graphene Oxide Nanocomposite for Lithium Ion Battery. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3636-3642.	8.0	276