Peter Kollar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8265614/publications.pdf

Version: 2024-02-01

236925 330143 1,452 52 25 37 citations h-index g-index papers 52 52 52 1621 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells, 2020, 9, 698.	4.1	95
2	Marine natural products: Bryostatins in preclinical and clinical studies. Pharmaceutical Biology, 2014, 52, 237-242.	2.9	86
3	Treatment with atorvastatin reduces serum adipocyteâ€fatty acid binding protein value in patients with hyperlipidaemia. European Journal of Clinical Investigation, 2007, 37, 637-642.	3.4	65
4	Cytotoxic Activities of Several Geranyl-Substituted Flavanones. Journal of Natural Products, 2010, 73, 568-572.	3.0	65
5	Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. Journal of Clinical Medicine, 2019, 8, 1054.	2.4	59
6	Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry, 2013, 21, 6531-6541.	3.0	56
7	Determination of serum zinc-alpha-2-glycoprotein in patients with metabolic syndrome by a new ELISA. Clinical Biochemistry, 2008, 41, 313-316.	1.9	50
8	Investigating the Spectrum of Biological Activity of Substituted Quinoline-2-Carboxamides and Their Isosteres. Molecules, 2012, 17, 613-644.	3.8	50
9	Natural Compound Cudraflavone B Shows Promising Anti-inflammatory Properties in Vitro. Journal of Natural Products, 2011, 74, 614-619.	3.0	46
10	Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorganic and Medicinal Chemistry, 2012, 20, 7059-7068.	3.0	46
11	Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sciences, 2019, 13, 481-488.	1.4	45
12	Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells. International Immunopharmacology, 2011, 11, 997-1001.	3.8	42
13	Investigation of sanguinarine and chelerythrine effects on LPS-induced inflammatory gene expression in THP-1 cell line. Phytomedicine, 2012, 19, 890-895.	5.3	42
14	Antibacterial and Herbicidal Activity of Ring-Substituted 3-Hydroxynaphthalene-2-carboxanilides. Molecules, 2013, 18, 7977-7997.	3.8	41
15	Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry, 2015, 23, 2035-2043.	3.0	41
16	Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. Journal of Applied Biomedicine, 2016, 14, 125-130.	1.7	39
17	Antibacterial and Herbicidal Activity of Ring-Substituted 2-Hydroxynaphthalene-1-carboxanilides. Molecules, 2013, 18, 9397-9419.	3.8	38
18	Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Medicinal Chemistry Research, 2018, 27, 278-284.	2.4	33

#	Article	IF	Citations
19	Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules, 2015, 20, 9767-9787.	3.8	32
20	Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. International Journal of Molecular Sciences, 2016, 17, 1219.	4.1	32
21	Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. Journal of Applied Biomedicine, 2018, 16, 241-246.	1.7	32
22	Bis-indols: a novel class of molecules enhancing the cytodifferentiating properties of retinoids in myeloid leukemia cells. Blood, 2002, 100, 3719-3730.	1.4	30
23	Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorganic and Medicinal Chemistry, 2015, 23, 4188-4196.	3.0	30
24	Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia (Poland), 2018, 73, 1137-1143.	1.5	30
25	Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides. International Journal of Molecular Sciences, 2018, 19, 2318.	4.1	29
26	Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THPâ€1) cells. British Journal of Pharmacology, 2011, 162, 1534-1541.	5.4	26
27	N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity. Molecules, 2016, 21, 1068.	3.8	25
28	The Chemical Composition of Achillea wilhelmsii C. Koch and Its Desirable Effects on Hyperglycemia, Inflammatory Mediators and Hypercholesterolemia as Risk Factors for Cardiometabolic Disease. Molecules, 2016, 21, 404.	3.8	23
29	Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinology Letters, 2015, 36 Suppl 1, 106-13.	0.2	21
30	Antiarrhythmic effect of newly synthesized compound 44Bu on model of aconitine-induced arrhythmia — Compared to lidocaine. European Journal of Pharmacology, 2007, 575, 127-133.	3.5	20
31	Preparation and Biological Properties of Ring-Substituted Naphthalene-1-Carboxanilides. Molecules, 2014, 19, 10386-10409.	3.8	20
32	Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation. Molecular Cancer Therapeutics, 2017, 16, 1831-1842.	4.1	17
33	Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules, 2017, 22, 1969.	3.8	17
34	Prenylated Flavonoids fromMorus albaL. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-13.	1.2	16
35	Synthesis and Biological Evaluation of 2-Hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(Alkoxycarbonyl)amino]benzoates. Scientific World Journal, The, 2013, 2013, 1-13.	2.1	15
36	Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis. Molecules, 2019, 24, 2991.	3.8	13

#	Article	IF	CITATIONS
37	Synthesis and Antimicrobial Evaluation of $1-[(2-Substituted phenyl)carbamoyl]$ naphthalen-2-yl Carbamates. Molecules, 2016, 21, 1189.	3.8	10
38	Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. International Journal of Molecular Sciences, 2020, 21, 3416.	4.1	10
39	Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules, 2017, 22, 2100.	3.8	9
40	Carvedilol Protects against Cyclosporine Nephropathy in Rats. Acta Veterinaria Brno, 2006, 75, 85-89.	0.5	9
41	Antimycobacterial and Photosynthetic Electron Transport Inhibiting Activity of Ring-Substituted 4-Arylamino-7-Chloroquinolinium Chlorides. Molecules, 2013, 18, 10648-10670.	3.8	8
42	In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2184-2188.	2.2	8
43	Effect of solvent on cytotoxicity and bioavailability of fatty acids. Immunopharmacology and Immunotoxicology, 2010, 32, 462-465.	2.4	6
44	Antiproliferative and cytotoxic activities of C-Geranylated flavonoids from Paulownia tomentosa Steud. Fruit. Bioorganic Chemistry, 2021, 111, 104797.	4.1	6
45	Distribution of Sulfate-Reducing Bacteria in the Environment: Cryopreservation Techniques and Their Potential Storage Application. Processes, 2021, 9, 1843.	2.8	6
46	Dibasic Derivatives of Phenylcarbamic Acid as Prospective Antibacterial Agents Interacting with Cytoplasmic Membrane. Antibiotics, 2020, 9, 64.	3.7	5
47	Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules, 2016, 21, 1476.	3.8	4
48	Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals, 2022, 15, 715.	3.8	3
49	Flavonoid 4′-O-Methylkuwanon E fromMorus albalnduces the Differentiation of THP-1 Human Leukemia Cells. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	1.2	1
50	Lipolytic and Hypolipidemic Properties of Newly Synthesized Aryloxypropanolamine Derivatives. Acta Veterinaria Brno, 2008, 77, 589-594.	0.5	0
51	A population-based case control study of congenital abnormalities and medication use during pregnancy using the Czech National Register of congenital abnormalities. Open Medicine (Poland), 2011, 6, 435-441.	1.3	0
52	Study of Protective Effects of \hat{l}^2 -blocker Carvedilol in Experimentally Induced Solar Burn. Acta Veterinaria Brno, 2001, 70, 397-401.	0.5	0