Xiufeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8265546/publications.pdf Version: 2024-02-01

XILLEENC LILL

#	Article	IF	CITATIONS
1	Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 2005, 42, 493-517.	3.3	100
2	Progression in children's understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching, 2006, 43, 320-347.	3.3	99
3	Effects of Combined Hands-on Laboratory and Computer Modeling on Student Learning of Gas Laws: A Quasi-Experimental Study. Journal of Science Education and Technology, 2006, 15, 89-100.	3.9	56
4	Framing students' progression in understanding matter: a review of previous research. Studies in Science Education, 2014, 50, 181-208.	5.4	44
5	Expert models and modeling processes associated with a computer-modeling tool. Science Education, 2006, 90, 579-604.	3.0	40
6	Moderation of the effects of scientific inquiry activities on low SES students' PISA 2015 science achievement by school teacher support and disciplinary climate in science classroom across gender. International Journal of Science Education, 2018, 40, 1284-1304.	1.9	40
7	Assessing Understanding of the Energy Concept in Different Science Disciplines. Science Education, 2016, 100, 483-516.	3.0	35
8	Development and application of a scale to measure students' STEM continuing motivation. International Journal of Science Education, 2019, 41, 1885-1904.	1.9	22
9	Opportunities-to-Learn at Home: Profiles of Students With and Without Reaching Science Proficiency. Journal of Science Education and Technology, 2011, 20, 375-387.	3.9	20
10	Effects of a professional development program on science teacher knowledge and practice, and student understanding of interdisciplinary science concepts. Journal of Research in Science Teaching, 2020, 57, 1028-1057.	3.3	20
11	Elementary to High School Students' Growth over an Academic Year in Understanding Concepts of Matter. Journal of Chemical Education, 2007, 84, 1853.	2.3	19
12	Teacher Conceptions and Approaches Associated with an Immersive Instructional Implementation of Computer-Based Models and Assessment in a Secondary Chemistry Classroom. International Journal of Science Education, 2014, 36, 467-505.	1.9	15
13	Descriptive Categories and Structural Characteristics of Students' Conceptions: An exploration of the relationship. Research in Science and Technological Education, 2002, 20, 111-132.	2.5	14
14	The effects of explanation-driven inquiry on students' conceptual understanding of redox. International Journal of Science Education, 2018, 40, 1857-1873.	1.9	14
15	Automated Scoring of Chinese Grades 7–9 Students' Competence in Interpreting and Arguing from Evidence. Journal of Science Education and Technology, 2021, 30, 269-282.	3.9	13
16	Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?. International Journal of Science Education, 2012, 34, 2061-2088.	1.9	12
17	An Investigation of Factors Affecting the Degree of Na�ve Impetus Theory Application. Journal of Science Education and Technology, 2005, 14, 101-116.	3.9	11
18	Effects of Professional Development on Teacher Pedagogical Content Knowledge, Inquiry Teaching Practices, and Student Understanding of Interdisciplinary Science. Journal of Science Teacher Education, 2018, 29, 263-282.	2.5	11

XIUFENG LIU

#	Article	IF	CITATIONS
19	Moderating effects of teacher feedback on the associations among inquiry-based science practices and students' science-related attitudes and beliefs. International Journal of Science Education, 2021, 43, 2426-2456.	1.9	10
20	Investigating disciplinary context effect on student scientific inquiry competence. International Journal of Science Education, 2019, 41, 2736-2764.	1.9	8
21	Using the Rasch model to validate stages of understanding the energy concept. Journal of Applied Measurement, 2005, 6, 224-41.	0.3	8
22	From ICT availability to student science achievement: mediation effects of ICT psychological need satisfactions and interest across genders. Research in Science and Technological Education, 2022, 40, 529-548.	2.5	6
23	A phenomenographic study of 10th grade students' understanding of electrolytes. Chemistry Education Research and Practice, 2019, 20, 204-212.	2.5	4
24	Effects of Teacher Professional Development and Science Classroom Learning Environment on Students' Science Achievement. Research in Science Education, 0, , 1.	2.3	4
25	Understanding the life cycle of computer-based models: the role of expert contributions in design, development and implementation. Educational Technology Research and Development, 2015, 63, 831-859.	2.8	0
26	Internet vs. Matter. International Journal of Cyber Behavior, Psychology and Learning, 2012, 2, 60-72.	0.2	0