
Brian C Monk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8265231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterisation of Candida parapsilosis CYP51 as a Drug Target Using Saccharomyces cerevisiae as Host. Journal of Fungi (Basel, Switzerland), 2022, 8, 69.	3.5	11
2	Dentistry students' experiences, engagement and perception of biochemistry within the dental curriculum and beyond. European Journal of Dental Education, 2021, 25, 318-324.	2.0	4
3	Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of Candida albicans. Journal of Fungi (Basel, Switzerland), 2021, 7, 68.	3.5	11
4	Highlighting membrane protein structure and function: AÂcelebration of the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100557.	3.4	42
5	Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. Journal of Fungi (Basel, Switzerland), 2021, 7, 67.	3.5	11
6	Structural Insights into the Azole Resistance of the Candida albicans Darlington Strain Using Saccharomyces cerevisiae Lanosterol 14α-Demethylase as a Surrogate. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgB	T \$Q3verloc	:k 40 Tf 50 5
7	Sterol 14α-Demethylase Ligand-Binding Pocket-Mediated Acquired and Intrinsic Azole Resistance in Fungal Pathogens. Journal of Fungi (Basel, Switzerland), 2021, 7, 1.	3.5	67
8	Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140206.	2.3	56
9	Attenuated apoptotic BAX expression as a xenobiotic reporter in Saccharomyces cerevisiae. FEMS Yeast Research, 2019, 19, .	2.3	0
10	Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	29
11	Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	19
12	Crystal Structures of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	54
13	Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	11
14	Using Yeast to Discover Inhibitors of Multidrug Efflux inÂCandida albicans. , 2017, , 491-543.		1
15	Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14î±-demethylase. Scientific Reports, 2017, 7, 15898.	3.3	59
16	Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals. PLoS ONE, 2016, 11, e0167485.	2.5	43
17	Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14î±-demethylase. Scientific Reports, 2016, 6, 26213.	3.3	80
18	Targeting efflux pumps to overcome antifungal drug resistance. Future Medicinal Chemistry, 2016, 8, 1485-1501.	2.3	89

BRIAN C MONK

#	Article	IF	CITATIONS
19	Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric. Scientific Reports, 2016, 6, 27132.	3.3	6
20	Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14l±-Demethylase. Antimicrobial Agents and Chemotherapy, 2015, 59, 4982-4989.	3.2	134
21	Characterisation of the DNA gyrase from the thermophilic eubacterium Thermus thermophilus. Protein Expression and Purification, 2015, 107, 62-67.	1.3	4
22	Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance. PLoS ONE, 2015, 10, e0126350.	2.5	51
23	Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3865-3870.	7.1	231
24	A yeast ABC interactome primer. Nature Chemical Biology, 2013, 9, 531-533.	8.0	1
25	Heterologous expression of <i>Candida albicans</i> Pma1p in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 302-311.	2.3	7
26	Catalysis product captured in lumazine synthase from the fungal pathogen <i>Candida glabrata</i> . Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1580-1586.	2.5	4
27	Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains*. Journal of Biological Chemistry, 2013, 288, 24480-24493.	3.4	42
28	[Fe2L3]4+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole "Click―Ligands: Synthesis, Structures and Exploration of Biological Activity. Molecules, 2013, 18, 6383-6407.	3.8	56
29	The Monoamine Oxidase A Inhibitor Clorgyline Is a Broad-Spectrum Inhibitor of Fungal ABC and MFS Transporter Efflux Pump Activities Which Reverses the Azole Resistance of Candida albicans and Candida glabrata Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 1508-1515.	3.2	85
30	Reconstitution of high-level micafungin resistance detected in a clinical isolate of Candida glabrata identifies functional homozygosity in glucan synthase gene expression. Journal of Antimicrobial Chemotherapy, 2012, 67, 1666-1676.	3.0	15
31	A d-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiology Letters, 2012, 328, 130-137.	1.8	31
32	Specific interactions between the <i>Candida albicans</i> ABC transporter Cdr1p ectodomain and a <scp>d</scp> â€octapeptide derivative inhibitor. Molecular Microbiology, 2012, 85, 747-767.	2.5	41
33	Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Molecular Microbiology, 2011, 82, 416-433.	2.5	22
34	Protein content of molar–incisor hypomineralisation enamel. Journal of Dentistry, 2010, 38, 591-596.	4.1	88
35	Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genetics and Biology, 2010, 47, 127-142.	2.1	141
36	Efflux-Mediated Antifungal Drug Resistance. Clinical Microbiology Reviews, 2009, 22, 291-321.	13.6	483

BRIAN C MONK

#	Article	IF	CITATIONS
37	Identification of Nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Analytical Biochemistry, 2009, 394, 87-91.	2.4	103
38	Outwitting Multidrug Resistance to Antifungals. Science, 2008, 321, 367-369.	12.6	125
39	ABC Transporter Cdr1p Contributes More than Cdr2p Does to Fluconazole Efflux in Fluconazole-Resistant <i>Candida albicans</i> Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2008, 52, 3851-3862.	3.2	144
40	Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 1150-1165.	3.4	173
41	Candida albicans drug resistance – another way to cope with stress. Microbiology (United Kingdom), 2007, 153, 3211-3217.	1.8	183
42	Amino Acid Residues Affecting Drug Pump Function in Candida albicans-C. albicans Drug Pump Function Medical Mycology Journal, 2006, 47, 275-281.	0.7	3
43	Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Molecular Microbiology, 2006, 62, 170-186.	2.5	61
44	Surface-Active Fungicidal d -Peptide Inhibitors of the Plasma Membrane Proton Pump That Block Azole Resistance. Antimicrobial Agents and Chemotherapy, 2005, 49, 57-70.	3.2	62
45	Peptide Motifs for Cell-Surface Intervention. BioDrugs, 2005, 19, 261-278.	4.6	11
46	Phosphorylation of Candida glabrata ATP-binding Cassette Transporter Cdr1p Regulates Drug Efflux Activity and ATPase Stability. Journal of Biological Chemistry, 2005, 280, 94-103.	3.4	35
47	Characterization of the Saccharomyces cerevisiae sec6-41 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele. Gene, 2005, 361, 57-66.	2.2	14
48	Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Japanese Journal of Infectious Diseases, 2005, 58, 1-7.	1.2	34
49	Morphotypic Conversion in Listeria monocytogenes Biofilm Formation: Biological Significance of Rough Colony Isolates. Applied and Environmental Microbiology, 2004, 70, 6686-6694.	3.1	50
50	Tandem affinity purification of theCandida albicans septin protein complex. Yeast, 2004, 21, 1025-1033.	1.7	53
51	Candida glabrata ATP-binding Cassette Transporters Cdr1p and Pdh1p Expressed in aSaccharomyces cerevisiae Strain Deficient in Membrane Transporters Show Phosphorylation-dependent Pumping Properties. Journal of Biological Chemistry, 2002, 277, 46809-46821.	3.4	58
52	Identification of two proteins induced by exposure of the pathogenic fungus Candida glabrata to fluconazole. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 245-252.	2.3	34
53	Genomic Pathways to Antifungal Discovery. Current Drug Targets Infectious Disorders, 2002, 2, 309-329.	2.1	10
54	Functional Expression of Candida albicans Drug Efflux Pump Cdr1p in a Saccharomyces cerevisiae Strain Deficient in Membrane Transporters. Antimicrobial Agents and Chemotherapy, 2001, 45, 3366-3374.	3.2	174

BRIAN C MONK

#	Article	IF	CITATIONS
55	Candida albicans pathogenicity: A proteomic perspective. Electrophoresis, 1999, 20, 2299-2308.	2.4	45
56	Regulation and pH-dependent expression of a bilaterally truncated yeast plasma membrane H+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 261-271.	2.6	16
57	Exploring an antifungal target in the plasma membrane H+-ATPase of fungi. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1326, 249-256.	2.6	52
58	The Plasma Membrane H+-ATPase of Fungi Annals of the New York Academy of Sciences, 1997, 834, 609-617.	3.8	58
59	Functional complementation between transmembrane loops of Saccharomyces cerevisiae and Candida albicans plasma membrane H+-ATPases. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1284, 181-190.	2.6	6
60	Crush Measurement for Side Impacts Using a Total Station. , 1996, , .		2
61	The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1239, 81-90.	2.6	76
62	Modeling a conformationally sensitive region of the membrane sector of the fungal plasma membrane proton pump. Journal of Bioenergetics and Biomembranes, 1994, 26, 101-115.	2.3	23
63	Fungal Plasma Membrane Proton Pumps as Promising New Antifungal Targets. Critical Reviews in Microbiology, 1994, 20, 209-223.	6.1	86
64	Epitope mapping and accessibility of immunodominant regions of yeast plasma membrane H+-ATPase. FEBS Journal, 1993, 212, 737-744.	0.2	29
65	Assessing hydrophobic regions of the plasma membrane H+-ATPase from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1102, 213-219.	1.0	16
66	l-Asparaginase from developing seeds of Lupinus arboreus. Phytochemistry, 1992, 31, 1519-1527.	2.9	29
67	Domains of yeast plasma membrane and ATPase-associated glycoprotein. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1062, 157-164.	2.6	28
68	Laser excitation of fluorescent-labeled polypeptides in polyacrylamide gels. Analytical Biochemistry, 1989, 179, 291-298.	2.4	5
69	Sidedness of yeast plasma membrane vesicles and mechanisms of activation of the ATPase by detergents. Biochimica Et Biophysica Acta - Biomembranes, 1989, 981, 226-234.	2.6	34
70	The cell wall of Chlamydomonas reinhardtii gametes: Composition, structure and autolysin-mediated shedding and dissolution. Planta, 1988, 176, 441-450.	3.2	11
71	Characterization of the peribacteroid membrane ATPase of lupin root nodules. Archives of Biochemistry and Biophysics, 1988, 264, 564-573.	3.0	31
72	Electrotransfer of SDS-PAGE separated polypeptides to the DE81 blotting matrix and detection of Chlamydomonas antigens and glycoconjugates. Journal of Immunological Methods, 1987, 96, 19-28.	1.4	8

#	Article	IF	CITATIONS
73	Topography of Chlamydomonas: fine structure and polypeptide components of the gametic flagellar membrane surface and the cell wall. Planta, 1983, 158, 517-533.	3.2	64
74	Inhibition of yeast mitochondrial ATPase by concanavalin A. Archives of Biochemistry and Biophysics, 1980, 199, 110-116.	3.0	6
75	Candida albicans pathogenicity: A proteomic perspective. , 0, , 28-37.		0