Georg M Guebitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264326/publications.pdf

Version: 2024-02-01

389 papers 18,677 citations

71
h-index

23533 111 g-index

406 all docs

406 docs citations

406 times ranked 14984 citing authors

#	Article	IF	Citations
1	Structureâ€function analysis of two closely related cutinases from <i>Thermobifida cellulosilytica</i> . Biotechnology and Bioengineering, 2022, 119, 470-481.	3.3	15
2	Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 2022, 10, 769830.	4.1	3
3	Comparison of Carbonic Anhydrases for CO2 Sequestration. International Journal of Molecular Sciences, 2022, 23, 957.	4.1	12
4	Enzymatic Conversion of Lignosulfonate into Wood Adhesives: A Next Step towards Fully Biobased Composite Materials. Polymers, 2022, 14, 259.	4. 5	8
5	Cutinase-Catalyzed Polyester-Polyurethane Degradation: Elucidation of the Hydrolysis Mechanism. Polymers, 2022, 14, 411.	4.5	18
6	Mechanistic investigation of the effect of endoglucanases related to pulp refining. Cellulose, 2022, 29, 2579-2598.	4.9	8
7	Effect of Binding Modules Fused to Cutinase on the Enzymatic Synthesis of Polyesters. Catalysts, 2022, 12, 303.	3.5	3
8	Bioleaching and Selective Precipitation for Metal Recovery from Basic Oxygen Furnace Slag. Processes, 2022, 10, 576.	2.8	7
9	Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues. Waste Management, 2022, 144, 182-190.	7.4	6
10	Enzymatic synthesis of wet-resistant lignosulfonate-starch adhesives. New Biotechnology, 2022, 69, 49-54.	4.4	7
11	Characterisation of enzyme catalysed hydrolysation stage of poly(lactic acid) fibre surface by nanoscale thermal analysis: New mechanistic insight. Materials and Design, 2022, 219, 110810.	7.0	3
12	Towards a better understanding of synergistic enzyme effects during refining of cellulose fibers. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100223.	2.6	5
13	Chitosan: Sources, Processing and Modification Techniques. Gels, 2022, 8, 393.	4.5	91
14	Bioleaching/enzyme-based recycling of aluminium and polyethylene from beverage cartons packaging waste. Resources, Conservation and Recycling, 2022, 185, 106444.	10.8	11
15	Role of Surface Enhancement in the Enzymatic Cross-Linking of Lignosulfonate Using Alternative Downstream Techniques. ACS Omega, 2022, 7, 23749-23758.	3.5	3
16	On the effective application of star-shaped polycaprolactones with different end functionalities to improve the properties of polylactic acid blend films. European Polymer Journal, 2022, 176, 111402.	5.4	5
17	Chemically modified inulin for intestinal drug delivery – A new dual bioactivity concept for inflammatory bowel disease treatment. Carbohydrate Polymers, 2021, 252, 117091.	10.2	6
18	A new bioleaching strategy for the selective recovery of aluminum from multi-layer beverage cans. Waste Management, 2021, 120, 16-24.	7.4	17

#	Article	IF	CITATIONS
19	Tuning of adsorption of enzymes to polymer. Methods in Enzymology, 2021, 648, 293-315.	1.0	5
20	Delivery of Biomolecules Using Chitosan Wound Dressings. Advances in Polymer Science, 2021, , 447-467.	0.8	2
21	Functionalization Strategies and Fabrication of Solvent-Cast PLLA for Bioresorbable Stents. Applied Sciences (Switzerland), 2021, 11, 1478.	2.5	13
22	Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. Journal of Environmental Management, 2021, 280, 111734.	7.8	18
23	Cultivation of heterotrophic algae on paper waste material and digestate. Algal Research, 2021, 54, 102193.	4.6	5
24	Biotechnological production and high potential of furan-based renewable monomers and polymers. Biotechnology Advances, 2021, 48, 107707.	11.7	42
25	Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells. Biosensors, 2021, 11, 170.	4.7	12
26	Biorefining: the role of endoglucanases in refining of cellulose fibers. Cellulose, 2021, 28, 7633-7650.	4.9	9
27	Enzyme Catalyzed Copolymerization of Lignosulfonates for Hydrophobic Coatings. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697310.	4.1	6
28	Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 2021, 9, .	4.1	19
29	Biocatalyzed Synthesis of Flavor Esters and Polyesters: A Design of Experiments (DoE) Approach. International Journal of Molecular Sciences, 2021, 22, 8493.	4.1	7
30	Comparison of a fungal and a bacterial laccase for lignosulfonate polymerization. Process Biochemistry, 2021, 109, 207-213.	3.7	12
31	Unveiling the Enzymatic Degradation Process of Biobased Thiophene Polyesters. Frontiers in Chemistry, 2021, 9, 771612.	3.6	3
32	Oxidation of Various Kraft Lignins with a Bacterial Laccase Enzyme. International Journal of Molecular Sciences, 2021, 22, 13161.	4.1	13
33	Polymeric microspheres as support to co-immobilized Agaricus bisporus and Trametes versicolor laccases and their application in diazinon degradation. Arabian Journal of Chemistry, 2020, 13, 4218-4227.	4.9	24
34	Stirred-tank and heap-bioleaching of shredder-light-fractions (SLF) by acidophilic bacteria. Hydrometallurgy, 2020, 193, 105315.	4.3	11
35	Valorisation of slaughter house and deinking paper waste streams for the production of enzyme by Trichoderma reesei. Journal of Cleaner Production, 2020, 275, 122882.	9.3	6
36	Cultivation of heterotrophic algae on enzymatically hydrolyzed municipal food waste. Algal Research, 2020, 50, 101993.	4.6	19

3

#	Article	IF	Citations
37	Controlled enzymatic hydrolysis and synthesis of lignin cross-linked chitosan functional hydrogels. International Journal of Biological Macromolecules, 2020, 161, 1440-1446.	7.5	16
38	A Fungal Ascorbate Oxidase with Unexpected Laccase Activity. International Journal of Molecular Sciences, 2020, 21, 5754.	4.1	11
39	High Throughput Screening for New Fungal Polyester Hydrolyzing Enzymes. Frontiers in Microbiology, 2020, 11, 554.	3.5	20
40	Harnessing the Power of Enzymes for Tailoring and Valorizing Lignin. Trends in Biotechnology, 2020, 38, 1215-1231.	9.3	36
41	Enzymatic synthesis and tailoring lignin properties: A systematic study on the effects of plasticizers. Polymer, 2020, 202, 122725.	3.8	12
42	Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly(neutral red) and chitosan modified electrodes. Sustainable Energy and Fuels, 2020, 4, 4238-4248.	4.9	15
43	Polyphenol oxidases exhibit promiscuous proteolytic activity. Communications Chemistry, 2020, 3, .	4.5	25
44	Effects of enzymes on the refining of different pulps. Journal of Biotechnology, 2020, 320, 1-10.	3.8	8
45	Shotgun proteomics reveals putative polyesterases in the secretome of the rock-inhabiting fungus Knufia chersonesos. Scientific Reports, 2020, 10, 9770.	3.3	14
46	Lignin-Based Pesticide Delivery System. ACS Omega, 2020, 5, 4322-4329.	3.5	20
47	Enzymatic synthesis of biobased polyesters utilizing aromatic diols as the rigid component. European Polymer Journal, 2020, 130, 109680.	5.4	24
48	Thermal Upgrade of Enzymatically Synthesized Aliphatic and Aromatic Oligoesters. Materials, 2020, 13, 368.	2.9	14
49	pH-responsive materials for optical monitoring of wound status. Sensors and Actuators B: Chemical, 2019, 301, 126966.	7.8	28
50	Bioprocessing of polyesters. , 2019, , 37-48.		1
51	Glutathione from recovered glucose as ingredient in antioxidant nanocapsules for triggered flavor delivery. Journal of Materials Chemistry B, 2019, 7, 3958-3969.	5.8	5
52	Surface functionalization of polyester. Methods in Enzymology, 2019, 627, 339-360.	1.0	3
53	Increased Flame Retardancy of Enzymatic Functionalized PET and Nylon Fabrics via DNA Immobilization. Frontiers in Chemistry, 2019, 7, 685.	3.6	9
54	Changing the Molecular Structure of Kraft Lignins—Ozone Treatment at Alkaline Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 15163-15172.	6.7	11

#	Article	IF	Citations
55	Environmentally friendly covalent coupling of proteins onto oxidized cellulosic materials. New Journal of Chemistry, 2019, 43, 14536-14545.	2.8	2
56	Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. European Polymer Journal, 2019, 120, 109201.	5.4	14
57	Immobilization of <i>Myceliophthora thermophila</i> laccase on poly(glycidyl methacrylate) microspheres enhances the degradation of azinphosâ€methyl. Journal of Applied Polymer Science, 2019, 136, 47417.	2.6	19
58	Microbial production of high value molecules using rayon waste material as carbon-source. New Biotechnology, 2019, 51, 8-13.	4.4	6
59	Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene) Tj ETQq1 1 104852.	0.784314 10.0	rgBT /Overl 41
60	Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics. Nature Communications, 2019, 10, 1762.	12.8	58
61	Lysozyme-Responsive Spray-Dried Chitosan Particles for Early Detection of Wound Infection. ACS Applied Bio Materials, 2019, 2, 1331-1339.	4.6	22
62	Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. Journal of Materials Chemistry B, 2019, 7, 6592-6603.	5.8	23
63	Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering. RSC Advances, 2019, 9, 36217-36226.	3.6	15
64	Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity. Applied Microbiology and Biotechnology, 2018, 102, 3551-3559.	3.6	51
65	Wound swab and wound biopsy yield similar culture results. Wound Repair and Regeneration, 2018, 26, 192-199.	3.0	28
66	The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Engineering in Life Sciences, 2018, 18, 334-340.	3.6	15
67	Enzymatic Recycling of High-Value Phosphor Flame-Retardant Pigment and Glucose from Rayon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 2386-2394.	6.7	25
68	Laccase catalyzed elimination of morphine from aqueous systems. New Biotechnology, 2018, 42, 19-25.	4.4	17
69	Laccase modified lignosulfonates as novel binder in pigment based paper coating formulations. Reactive and Functional Polymers, 2018, 123, 20-25.	4.1	30
70	Technical Lignins and Their Utilization in the Surface Sizing of Paperboard. Industrial & Engineering Chemistry Research, 2018, 57, 6284-6291.	3.7	15
71	Synergistic effect of mutagenesis and truncation to improve a polyesterase from Clostridium botulinum for polyester hydrolysis. Scientific Reports, 2018, 8, 3745.	3.3	27
72	Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels. New Biotechnology, 2018, 40, 236-244.	4.4	38

#	Article	IF	Citations
73	Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydrate Polymers, 2018, 181, 551-559.	10.2	52
74	Enzymes as Enhancers for the Biodegradation of Synthetic Polymers in Wastewater. ChemBioChem, 2018, 19, 317-325.	2.6	17
75	Efficient Physisorption of Candida Antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis. Catalysts, 2018, 8, 369.	3.5	19
76	Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends. Polymers, 2018, 10, 1107.	4.5	47
77	Internalization of Methotrexate Conjugates by Folate Receptor-α. Biochemistry, 2018, 57, 6780-6786.	2.5	12
78	Enzymatic Degradation of Star Poly(l μ -Caprolactone) with Different Central Units. Polymers, 2018, 10, 1266.	4.5	34
79	Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 176-187.	4.3	21
80	Enzymes as Green Catalysts and Interactive Biomolecules in Wound Dressing Hydrogels. Trends in Biotechnology, 2018, 36, 1040-1053.	9.3	41
81	Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder. PLoS ONE, 2018, 13, e0197537.	2.5	12
82	Towards Sustainable Highâ€Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacolâ€Based Polyesters. ChemSusChem, 2018, 11, 2529-2539.	6.8	63
83	Enzymatic recovery of polyester building blocks from polymer blends. Process Biochemistry, 2017, 59, 58-64.	3.7	89
84	Two distinct enzymatic approaches for coupling fatty acids onto lignocellulosic materials. Process Biochemistry, 2017, 59, 111-115.	3.7	6
85	Cellobiose dehydrogenase-based biomedical applications. Process Biochemistry, 2017, 59, 37-45.	3.7	19
86	A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters. Journal of Biotechnology, 2017, 257, 70-77.	3.8	13
87	Influence of nitrogen-rich substrates on biogas production and on the methanogenic community under mesophilic and thermophilic conditions. Anaerobe, 2017, 46, 146-154.	2.1	14
88	Engineering of the zinc-binding domain of an esterase from Clostridium botulinum towards increased activity on polyesters. Catalysis Science and Technology, 2017, 7, 1440-1447.	4.1	14
89	A Dual-Enzyme Hydrogen Peroxide Generation Machinery in Hydrogels Supports Antimicrobial Wound Treatment. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15307-15316.	8.0	44
90	Synergistic chemoâ€enzymatic hydrolysis of poly(ethylene terephthalate) from textile waste. Microbial Biotechnology, 2017, 10, 1376-1383.	4.2	85

#	Article	IF	Citations
91	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. Environmental Science & Enzyme Active-Site Accessibility.	10.0	89
92	Hydrolysis of Ionic Phthalic Acid Based Polyesters by Wastewater Microorganisms and Their Enzymes. Environmental Science & Env	10.0	35
93	Superhydrophobic functionalization of cutinase activated poly(lactic acid) surfaces. Green Chemistry, 2017, 19, 816-822.	9.0	25
94	PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. Applied Microbiology and Biotechnology, 2017, 101, 2291-2303.	3.6	82
95	Discovery of Polyesterases from Moss-Associated Microorganisms. Applied and Environmental Microbiology, 2017, 83, .	3.1	29
96	Enzymatic production of clickable and PEGylated recombinant polyhydroxyalkanoates. Green Chemistry, 2017, 19, 5494-5504.	9.0	17
97	Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. Green Chemistry, 2017, 19, 5381-5384.	9.0	80
98	Hisâ€Tag Immobilization of Cutinase 1 From Thermobifida cellulosilytica for Solventâ€Free Synthesis of Polyesters. Biotechnology Journal, 2017, 12, 1700322.	3.5	16
99	Small cause, large effect: Structural characterization of cutinases from <i>Thermobifida cellulosilytica</i> . Biotechnology and Bioengineering, 2017, 114, 2481-2488.	3.3	56
100	Polyol Structure Influences Enzymatic Hydrolysis of Bioâ€Based 2,5â€Furandicarboxylic Acid (FDCA) Polyesters. Biotechnology Journal, 2017, 12, 1600741.	3.5	29
101	Cytotoxicity of Biochar: A Workplace Safety Concern?. Environmental Science and Technology Letters, 2017, 4, 362-366.	8.7	48
102	Enzymatic Functionalization of HMLS-Polyethylene Terephthalate Fabrics Improves the Adhesion to Rubber. ACS Sustainable Chemistry and Engineering, 2017, 5, 6456-6465.	6.7	27
103	Enzymatic hydrolysis of poly(ethyleneterephthalate) used for and analysed by pore modification of track-etched membranes. New Biotechnology, 2017, 39, 42-50.	4.4	14
104	Chitosan hydrogel formation using laccase activated phenolics as cross-linkers. Carbohydrate Polymers, 2017, 157, 814-822.	10.2	78
105	Enzyme-catalyzed functionalization of poly(L-lactic acid) for drug delivery applications. Process Biochemistry, 2017, 59, 77-83.	3.7	42
106	Cellobiose dehydrogenase and chitosanâ€based lysozyme responsive materials for antimicrobial wound treatment. Biotechnology and Bioengineering, 2017, 114, 416-422.	3.3	24
107	Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach. Green Chemistry, 2017, 19, 490-502.	9.0	29
108	Polyester hydrolysis is enhanced by a truncated esterase: Less is more. Biotechnology Journal, 2017, 12,	3.5	26

#	Article	IF	Citations
109	Enzymatic Systems for Cellulose Acetate Degradation. Catalysts, 2017, 7, 287.	3.5	40
110	Enzymatic Degradation of Poly(ethylene 2,5-furanoate) Powders and Amorphous Films. Catalysts, 2017, 7, 318.	3.5	76
111	Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica. Frontiers in Microbiology, 2017, 8, 938.	3.5	62
112	Polyol Structure and Ionic Moieties Influence the Hydrolytic Stability and Enzymatic Hydrolysis of Bio-Based 2,5-Furandicarboxylic Acid (FDCA) Copolyesters. Polymers, 2017, 9, 403.	4.5	16
113	2. Microbial applications for fabric and textile industries. , 2016, , 33-78.		1
114	Nature Inspired Solutions for Polymers: Will Cutinase Enzymes Make Polyesters and Polyamides Greener?. Catalysts, 2016, 6, 205.	3.5	42
115	On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions. Molecules, 2016, 21, 1245.	3.8	17
116	Polymerization of Various Lignins via Immobilized Myceliophthora thermophila Laccase (MtL). Polymers, 2016, 8, 280.	4.5	27
117	Exploring mild enzymatic sustainable routes for the synthesis of bioâ€degradable aromaticâ€aliphatic oligoesters. Biotechnology Journal, 2016, 11, 642-647.	3.5	24
118	Myeloperoxidaseâ€responsive materials for infection detection based on immobilized aminomethoxyphenol. Biotechnology and Bioengineering, 2016, 113, 2553-2560.	3.3	9
119	Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1448-1456.	3.4	34
120	Chitosan based substrates for wound infection detection based on increased lysozyme activity. Carbohydrate Polymers, 2016, 151, 260-267.	10.2	23
121	Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate). Bioresource Technology, 2016, 218, 1298-1302.	9.6	50
122	Commercial cellulases from Trichoderma longibrachiatum enable a large-scale production of chito-oligosaccharides. Pure and Applied Chemistry, 2016, 88, 865-872.	1.9	5
123	Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. Polymer International, 2016, 65, 861-871.	3.1	127
124	Hydrolysis of synthetic polyesters by <i>Clostridium botulinum</i> esterases. Biotechnology and Bioengineering, 2016, 113, 1024-1034.	3.3	65
125	Influence of Oxygen and Mediators on Laccase-Catalyzed Polymerization of Lignosulfonate. ACS Sustainable Chemistry and Engineering, 2016, 4, 5303-5310.	6.7	55
126	Hydrolytic degradation of ROMP thermosetting materials catalysed by bio-derived acids and enzymes: from networks to linear materials. Green Chemistry, 2016, 18, 5190-5199.	9.0	13

#	Article	IF	Citations
127	Cellobiohydrolases Produce Different Oligosaccharides from Chitosan. Biomacromolecules, 2016, 17, 2284-2292.	5.4	21
128	Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly. Langmuir, 2016, 32, 1347-1359.	3.5	122
129	The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters. Trends in Biotechnology, 2016, 34, 316-328.	9.3	107
130	Enlarging the tools for efficient enzymatic polycondensation: structural and catalytic features of cutinase 1 from Thermobifida cellulosilytica. Catalysis Science and Technology, 2016, 6, 3430-3442.	4.1	33
131	Antimicrobial Cellobiose Dehydrogenase-Chitosan Particles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 967-973.	8.0	25
132	Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Applied Microbiology and Biotechnology, 2016, 100, 1753-1764.	3.6	75
133	An Esterase from Anaerobic <i>Clostridium hathewayi</i> Can Hydrolyze Aliphatic–Aromatic Polyesters. Environmental Science & Technology, 2016, 50, 2899-2907.	10.0	39
134	Enzymatic hydrolysis of poly(ethylene furanoate). Journal of Biotechnology, 2016, 235, 47-53.	3.8	104
135	Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. Bioresource Technology, 2016, 207, 244-251.	9.6	27
136	Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate) model substrates for the investigation of enzymatic hydrolysis. Data in Brief, 2016, 7, 291-298.	1.0	11
137	Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polymer Degradation and Stability, 2016, 132, 69-77.	5.8	85
138	Substrate specificities of cutinases on aliphatic–aromatic polyesters and on their model substrates. New Biotechnology, 2016, 33, 295-304.	4.4	56
139	Laccase oxidation and removal of toxicants released during combustion processes. Chemosphere, 2016, 144, 652-660.	8.2	14
140	Rapid enzyme analysis as a diagnostic tool for wound infection: Comparison between clinical judgment, microbiological analysis, and enzyme analysis. Wound Repair and Regeneration, 2015, 23, 345-352.	3.0	25
141	Biocatalyzed approach for the surface functionalization of poly(Lâ€lactic acid) films using hydrolytic enzymes. Biotechnology Journal, 2015, 10, 1739-1749.	3.5	55
142	Phenolic antioxidants and their role in quenching of reactive molecular species in the human skin injury. Lipid Technology, 2015, 27, 36-39.	0.3	3
143	Assessment of infection in chronic wounds based on the activities of elastase, lysozyme and myeloperoxidase. British Journal of Dermatology, 2015, 173, 1529-1531.	1.5	13
144	Fast Blue RRâ€"Siloxane Derivatized Materials Indicate Wound Infection Due to a Deep Blue Color Development. Materials, 2015, 8, 6633-6639.	2.9	4

#	Article	IF	CITATIONS
145	Biomimetic Approach to Enhance Enzymatic Hydrolysis of the Synthetic Polyester Poly(1,4-butylene) Tj ETQq1	l 0.784314	rgBT /Overlo
146	Lysozymeâ€responsive polymer systems for detection of infection. Engineering in Life Sciences, 2015, 15, 368-375.	3.6	13
147	Peptide Anchor for Folate-Targeted Liposomal Delivery. Biomacromolecules, 2015, 16, 2904-2910.	5.4	34
148	Laccase mediated oxidation of industrial lignins: Is oxygen limiting?. Process Biochemistry, 2015, 50, 1277-1283.	3.7	49
149	Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 90-98.	5.0	26
150	Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes. Journal of Materials Chemistry B, 2015, 3, 7014-7019.	5.8	26
151	2nd International Conference Biogas Science 2014, Vienna, Austria. Energy &	5.1	O
152	Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins. Applied and Environmental Microbiology, 2015, 81, 3586-3592.	3.1	149
153	Biomarkers for infection: enzymes, microbes, and metabolites. Applied Microbiology and Biotechnology, 2015, 99, 4595-4614.	3.6	45
154	Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. Advances in Biochemical Engineering/Biotechnology, 2015, 151, 1-40.	1.1	9
155	Enzyme-responsive polymers for microbial infection detection. Expert Review of Molecular Diagnostics, 2015, 15, 1125-1131.	3.1	12
156	A robust and simple protocol for the synthesis of arylfluorophosphonates. Tetrahedron Letters, 2015, 56, 5619-5622.	1.4	6
157	Laccase functionalized cellulose acetate for the removal of toxic combustion products. Reactive and Functional Polymers, 2015, 97, 12-18.	4.1	7
158	An electrochemical sensor for fast detection of wound infection based on myeloperoxidase activity. Sensors and Actuators B: Chemical, 2015, 209, 265-274.	7.8	32
159	Laccase–cellobiose dehydrogenase-catalyzed detoxification of phenolic-rich olive processing residues. International Journal of Environmental Science and Technology, 2015, 12, 1343-1352.	3.5	11
160	Laccase Functionalization of Flax and Coconut Fibers. Polymers, 2014, 6, 1676-1684.	4.5	18
161	Identification and Application of Enantiocomplementary Lactamases for Vince Lactam Derivatives. ChemCatChem, 2014, 6, 2517-2521.	3.7	18
162	Microbial Conversion of Crude Glycerol to Dihydroxyacetone. Waste and Biomass Valorization, 2014, 5, 781-787.	3.4	9

#	Article	IF	CITATIONS
163	Biosilicaâ€loaded poly(ϵâ€caprolactone) nanofibers: A step closer to bioprinted materials with tunable properties. Biotechnology Journal, 2014, 9, 1231-1232.	3.5	0
164	Preventing microbial colonisation of catheters: Antimicrobial and antibiofilm activities of cellobiose dehydrogenase. International Journal of Antimicrobial Agents, 2014, 44, 402-408.	2.5	39
165	Esterases from Clostridium are involved in anaerobic degradation of synthetic polyester. New Biotechnology, 2014, 31, S3.	4.4	1
166	Green polymer processing with enzymes. New Biotechnology, 2014, 31, S31.	4.4	0
167	Enzyme responsive polymers. New Biotechnology, 2014, 31, S2.	4.4	0
168	Bioresponsive polymers for the detection of bacterial contaminations in platelet concentrates. New Biotechnology, 2014, 31, 150-155.	4.4	4
169	Enzyme-based online monitoring and measurement of antioxidant activity using an optical oxygen sensor coupled to an HPLC system. Analytical and Bioanalytical Chemistry, 2013, 405, 2371-2377.	3.7	11
170	Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microbial Cell Factories, 2013, 12, 38.	4.0	38
171	Activated zeolite—suitable carriers for microorganisms in anaerobic digestion processes?. Applied Microbiology and Biotechnology, 2013, 97, 3225-3238.	3 . 6	24
172	Enzymatic hydrolysis of polyester based coatings. Reactive and Functional Polymers, 2013, 73, 1335-1339.	4.1	12
173	Effect of cross-linking method on the activity of spray-dried chitosan microparticles with immobilized laccase. Food and Bioproducts Processing, 2013, 91, 525-533.	3 . 6	29
174	Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus. RSC Advances, 2013, 3, 1460-1467.	3.6	16
175	Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 2013, 8, 97-109.	3.5	249
176	Synthesis of multifunctional bioresponsive polymers for the management of chronic wounds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 882-891.	3.4	18
177	Banning toxic heavy-metal catalysts from paints: enzymatic cross-linking of alkyd resins. Green Chemistry, 2013, 15, 381.	9.0	36
178	Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydrate Polymers, 2013, 92, 989-996.	10.2	95
179	HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. International Journal of Pharmaceutics, 2013, 458, 1-8.	5. 2	15
180	Analysis of myeloperoxidase activity in wound fluids as a marker of infection. Annals of Clinical Biochemistry, 2013, 50, 245-254.	1.6	56

#	Article	IF	Citations
181	Bioactive albumin functionalized polylactic acid membranes for improved biocompatibility. Reactive and Functional Polymers, 2013, 73, 1399-1404.	4.1	29
182	Developing <scp>S</scp> yrin <scp>OX</scp> total antioxidant capacity assay for measuring antioxidants in humans. International Journal of Experimental Pathology, 2013, 94, 25-33.	1.3	4
183	Novel proteaseâ€based diagnostic devices for detection of wound infection. Wound Repair and Regeneration, 2013, 21, 482-489.	3.0	28
184	Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules, 2013, 14, 1769-1776.	5.4	137
185	Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase. Enzyme and Microbial Technology, 2013, 52, 60-67.	3.2	49
186	An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 396-404.	4.3	40
187	Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins. Applied and Environmental Microbiology, 2013, 79, 4230-4238.	3.1	86
188	Surface engineering of a cutinase from <i>Thermobifida cellulosilytica</i> for improved polyester hydrolysis. Biotechnology and Bioengineering, 2013, 110, 2581-2590.	3.3	118
189	A novel environmentally friendly 2,4,6-trinitrotoluene (TNT) based explosive. Macedonian Journal of Chemistry and Chemical Engineering, 2013, 27, 107.	0.6	4
190	Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from (i> Bacillus megaterium BM3 (i>. Biocatalysis and Biotransformation, 2012, 30, 57-62.	2.0	1
191	Characterization of a new cutinase from <i>Thermobifida alba</i> for PET-surface hydrolysis. Biocatalysis and Biotransformation, 2012, 30, 2-9.	2.0	125
192	A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA). Polymers, 2012, 4, 617-629.	4.5	146
193	Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli. Journal of Biotechnology, 2012, 157, 140-147.	3.8	37
194	Two-step enzymatic functionalisation of polyamide with phenolics. Journal of Molecular Catalysis B: Enzymatic, 2012, 79, 54-60.	1.8	35
195	Enzymatic colouration with laccase and peroxidases: Recent progress. Biocatalysis and Biotransformation, 2012, 30, 125-140.	2.0	30
196	Advances in the Application of Oxidative Enzymes in Biopolymer Chemistry and Biomaterial Research. ACS Symposium Series, 2012, , 329-349.	0.5	1
197	Residual transglutaminase in collagen – Effects, detection, quantification, and removal. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 282-288.	4.3	7
198	Bamboo fibre processing: insights into hemicellulase and cellulase substrate accessibility. Biocatalysis and Biotransformation, 2012, 30, 27-37.	2.0	15

#	Article	IF	Citations
199	Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation, 2012, 30, 86-95.	2.0	40
200	Enzymatic synthesis of lignin–siloxane hybrid functional polymers. Biotechnology Journal, 2012, 7, 284-292.	3.5	11
201	Engineering Strategies for Successful Development of Functional Polymers Using Oxidative Enzymes. Chemical Engineering and Technology, 2012, 35, 1359-1372.	1.5	27
202	Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. International Journal of Pharmaceutics, 2012, 427, 460-466.	5.2	77
203	Signal enhancement in polysaccharide based sensors for infections by incorporation of chemically modified laccase. New Biotechnology, 2012, 29, 502-509.	4.4	18
204	Bioresponsive systems based on crosslinked polysaccharide hydrogels. Process Biochemistry, 2012, 47, 305-311.	3.7	13
205	A unique twoâ€way approach for the validation of total antioxidant capacity of serum samples. European Journal of Clinical Investigation, 2012, 42, 432-438.	3.4	3
206	Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 2011, 44, 4632-4640.	4.8	298
207	Novel peptidoglycan-based diagnostic devices for detection of wound infection. Diagnostic Microbiology and Infectious Disease, 2011, 71, 12-23.	1.8	60
208	Enzymatic synthesis of catechol and hydroxyl-carboxic acid functionalized chitosan microspheres for iron overload therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 294-303.	4.3	36
209	Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Research, 2011, 45, 781-787.	11.3	98
210	Sensor materials for the detection of human neutrophil elastase and cathepsin G activity in wound fluid. Experimental Dermatology, 2011, 20, 508-513.	2.9	55
211	Tailoring elastase inhibition with synthetic peptides. European Journal of Pharmacology, 2011, 666, 53-60.	3.5	13
212	<i>In situ</i> generation of hydrogen peroxide by carbohydrate oxidase and cellobiose dehydrogenase for bleaching purposes. Biotechnology Journal, 2011, 6, 224-230.	3.5	19
213	Changes in the bacterial community structure and diversity during bamboo retting. Biotechnology Journal, 2011, 6, 1262-1271.	3.5	10
214	Editorial: Emergence of polymer biotechnology. Biotechnology Journal, 2011, 6, 1167-1167.	3.5	2
215	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. Applied Microbiology and Biotechnology, 2011, 90, 1311-1321.	3.6	11
216	Hydrolysis of polyethyleneterephthalate by <i>p</i> a€nitrobenzylesterase from <i>Bacillus subtilis</i> Biotechnology Progress, 2011, 27, 951-960.	2.6	138

#	Article	IF	Citations
217	Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. Bioresource Technology, 2011, 102, 4353-4359.	9.6	59
218	Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme and Microbial Technology, 2011, 48, 195-208.	3.2	270
219	Bioresponsive systems based on polygalacturonate containing hydrogels. Enzyme and Microbial Technology, 2011, 48, 312-318.	3.2	12
220	Cross-linking of collagen with laccases and tyrosinases. Materials Science and Engineering C, 2011, 31, 1068-1077.	7.3	70
221	Enzymatically enriching naringenin with hydroxylated and/or methoxylated phenolic compounds. Process Biochemistry, 2011, 46, 1019-1024.	3.7	5
222	Antimicrobial and antioxidant linen via laccase-assisted grafting. Reactive and Functional Polymers, 2011, 71, 713-720.	4.1	66
223	Hydrolases in Polymer Chemistry: Part III: Synthesis and Limited Surface Hydrolysis of Polyesters and Other Polymers. Advances in Polymer Science, 2010, , 115-126.	0.8	2
224	Editorial: Biogas science – State of the art and future perspectives. Engineering in Life Sciences, 2010, 10, 491-492.	3.6	2
225	Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration. Applied Microbiology and Biotechnology, 2010, 85, 563-571.	3.6	29
226	Chemo-enzymatic functionalisation of lignocellulose materials using oxiranes. Process Biochemistry, 2010, 45, 1557-1562.	3.7	23
227	Covalent immobilisation of protease and laccase substrates onto siloxanes. Chemosphere, 2010, 80, 922-928.	8.2	5
228	Characterization of an anaerobic population digesting a model substrate for maize in the presence of trace metals. Chemosphere, 2010, 80, 829-836.	8.2	35
229	Cellular and plasma antioxidant activity assay using tetramethoxy azobismethylene quinone. Free Radical Biology and Medicine, 2010, 49, 1205-1211.	2.9	8
230	Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnology Progress, 2010, 26, 636-643.	2.6	21
231	Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochemistry, 2010, 45, 1072-1081.	3.7	69
232	Reactivity of long chain alkylamines to lignin moieties: Implications on hydrophobicity of lignocellulose materials. Journal of Biotechnology, 2010, 149, 81-87.	3.8	55
233	Development of a biodegradable ethylene glycol dinitrate-based explosive. Journal of Hazardous Materials, 2010, 176, 125-130.	12.4	13
234	Laccase-generated tetramethoxy azobismethylene quinone (TMAMQ) as a tool for antioxidant activity measurement. Food Chemistry, 2010, 118, 437-444.	8.2	23

#	Article	IF	Citations
235	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technology, 2010, 101, 5054-5062.	9.6	112
236	Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme and Microbial Technology, 2010, 46, 272-280.	3.2	51
237	Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresource Technology, 2010, 101, 836-839.	9.6	135
238	Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresource Technology, 2010, 101, 2793-2799.	9.6	59
239	Covalent bonding of protease to different sized enteric polymers and their potential use in wool processing. Enzyme and Microbial Technology, 2010, 47, 105-111.	3.2	26
240	Smart textiles and biomaterials containing enzymes or enzyme substrates., 2010,, 56-74.		3
241	Hydrolysis of Cutin by PETâ€Hydrolases. Macromolecular Symposia, 2010, 296, 342-346.	0.7	12
242	Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 47-68.	1.1	14
243	Mechanistic insights into laccase-mediated functionalisation of lignocellulose material. Biotechnology and Genetic Engineering Reviews, 2010, 27, 305-330.	6.2	22
244	Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water Research, 2010, 44, 1970-1980.	11.3	82
245	Ultrasound Radiation as a "Throwing Stones―Technique for the Production of Antibacterial Nanocomposite Textiles. ACS Applied Materials & Interfaces, 2010, 2, 1999-2004.	8.0	69
246	Grafting of Functional Molecules: Insights into Peroxidase-Derived Materials., 2010,, 155-177.		3
247	Tyrosinase-Catalysed Coating of Wool Fibres With Different Protein-Based Biomaterials. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 253-269.	3.5	29
248	Coupling of aromatic amines onto syringylglycerol \hat{l}^2 -guaiacylether using Bacillus SF spore laccase: A model for functionalization of lignin-based materials. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 143-149.	1.8	45
249	A novel aryl acylamidase from <i>Nocardia farcinica</i> hydrolyses polyamide. Biotechnology and Bioengineering, 2009, 102, 1003-1011.	3.3	46
250	Antioxidant activity assay based on laccase-generated radicals. Analytical and Bioanalytical Chemistry, 2009, 393, 679-687.	3.7	37
251	Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2. Applied Microbiology and Biotechnology, 2009, 85, 75-83.	3.6	35
252	Voltametric monitoring of enzyme-mediated indigo reduction in the presence of various fibre materials. Enzyme and Microbial Technology, 2009, 45, 317-323.	3.2	16

#	Article	IF	Citations
253	CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity. Surface and Coatings Technology, 2009, 204, 54-57.	4.8	295
254	Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations. Journal of Hazardous Materials, 2009, 165, 285-290.	12.4	33
255	Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology, 2009, 143, 207-212.	3.8	183
256	Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochemistry, 2009, 44, 749-756.	3.7	157
257	Oxidation of glycerol by 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in the presence of laccase. Bioresource Technology, 2009, 100, 4541-4545.	9.6	38
258	Industrial production of enzymeâ€modified wool fibers for machineâ€washable bed coverings. Biotechnology Journal, 2009, 4, 1441-1449.	3. 5	8
259	Substrate Specificities of Glycosidases from Aspergillus Species Pectinase Preparations on Elderberry Anthocyanins. Journal of Agricultural and Food Chemistry, 2009, 57, 1006-1012.	5.2	15
260	Siloxane removal from biogas by biofiltration: biodegradation studies. Clean Technologies and Environmental Policy, 2008, 10, 211-218.	4.1	99
261	Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. Journal of Polymer Science Part A, 2008, 46, 6435-6443.	2.3	118
262	Formal Asymmetric Biocatalytic Reductive Amination. Angewandte Chemie - International Edition, 2008, 47, 9337-9340.	13.8	219
263	Degradation of azo dyes by oxidative processes – Laccase and ultrasound treatment. Bioresource Technology, 2008, 99, 4213-4220.	9.6	72
264	Tyrosinase-catalysed coupling of functional molecules onto protein fibres. Enzyme and Microbial Technology, 2008, 42, 535-542.	3.2	36
265	Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 2008, 99, 3051-3056.	9.6	342
266	Biological Coloration of Flax Fabrics with Flavonoids using Laccase from <i>Trametes hirsuta </i> . Engineering in Life Sciences, 2008, 8, 324-330.	3.6	50
267	Laccaseâ€Mediated Wood Surface Functionalization. Engineering in Life Sciences, 2008, 8, 297-302.	3.6	56
268	Topical Issue: "Biotechnical Functionalization of Renewable Polymeric Materials― Engineering in Life Sciences, 2008, 8, 193-194.	3.6	0
269	Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 2008, 26, 32-38.	9.3	183
270	Laccase-Induced Grafting on Plasma-Pretreated Polypropylene. Biomacromolecules, 2008, 9, 2735-2741.	5 . 4	24

#	Article	IF	CITATIONS
271	Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 2008, 135, 45-51.	3.8	63
272	Surface hydrolysis of polyamide with a new polyamidase from <i>Beauveria </i> >i> brongniartii Biocatalysis and Biotransformation, 2008, 26, 371-377.	2.0	21
273	Enzymatic surface hydrolysis of PET enhances bonding in PVC coating. Biocatalysis and Biotransformation, 2008, 26, 365-370.	2.0	23
274	Enzymatic Removal of Off-flavors from Apple Juice. Journal of Agricultural and Food Chemistry, 2008, 56, 2485-2489.	5.2	32
275	Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from <i>Penicillium citrinum </i> . Biocatalysis and Biotransformation, 2007, 25, 171-177.	2.0	103
276	Biotechnological treatment of textile dye effluent., 2007,, 212-231.		3
277	Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 455-461.	2.4	68
278	Sonochemical substrate selectivity and reaction pathway of systematically substituted azo compounds. Chemosphere, 2007, 67, 1526-1532.	8.2	7
279	Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. Journal of Biotechnology, 2007, 129, 62-68.	3.8	40
280	Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology, 2007, 128, 849-857.	3.8	161
281	Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. Ultrasonics Sonochemistry, 2007, 14, 355-362.	8.2	88
282	Staining of wool using the reaction products of ABTS oxidation by Laccase: Synergetic effects of ultrasound and cyclic voltammetry. Ultrasonics Sonochemistry, 2007, 14, 363-367.	8.2	19
283	Optimization of a biocatalytic single-step alkene cleavage of aryl alkenes. Tetrahedron, 2007, 63, 3350-3354.	1.9	22
284	A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 2007, 40, 1772-1781.	3.2	66
285	Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzyme and Microbial Technology, 2007, 40, 1801-1805.	3.2	48
286	Coating of immobilised laccase for stability enhancement: A novel approach. Applied Catalysis A: General, 2007, 329, 156-160.	4.3	37
287	Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme and Microbial Technology, 2007, 40, 1656-1661.	3.2	84
288	Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme and Microbial Technology, 2007, 40, 1678-1685.	3.2	56

#	Article	IF	Citations
289	The influence of enzymatic treatment on wool fibre properties using PEG-modified proteases. Enzyme and Microbial Technology, 2007, 40, 1705-1711.	3.2	42
290	Enzymatic reduction and oxidation of fibre-bound azo-dyes. Enzyme and Microbial Technology, 2007, 40, 1732-1738.	3.2	35
291	Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme and Microbial Technology, 2007, 40, 1739-1747.	3.2	38
292	Enzymatic synthesis of Tinuvin. Enzyme and Microbial Technology, 2007, 40, 1748-1752.	3.2	15
293	Enzymatic polymerization on the surface of functionalized cellulose fibers. Enzyme and Microbial Technology, 2007, 40, 1782-1787.	3.2	45
294	Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. Enzyme and Microbial Technology, 2007, 41, 867-875.	3.2	76
295	Decolourisation of a synthetic textile effluent using a bacterial consortium. Biotechnology Journal, 2007, 2, 370-373.	3.5	3
296	Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal, 2007, 2, 353-360.	3.5	33
297	Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnology Journal, 2007, 2, 306-315.	3.5	45
298	Enzymatic coating of lignocellulosic surfaces with polyphenols. Biotechnology Journal, 2007, 2, 334-341.	3.5	64
299	Enzymatic reduction of azo and indigoid compounds. Applied Microbiology and Biotechnology, 2007, 77, 321-327.	3.6	35
300	Bioscouring of Cotton Fiber with Polygalacturonase Induced in Sclerotium rolfsii using Cellulose and Glucose-pectin. Textile Reseach Journal, 2006, 76, 400-405.	2.2	10
301	Laccase Catalyzed Indigo Carmine Transformation. Journal of Natural Fibers, 2006, 3, 131-153.	3.1	3
302	Antagonism of Trichoderma or Gliocladium Species on Two Phytopathogenic Species of Fusarium. Journal of Natural Fibers, 2006, 3, 1-17.	3.1	3
303	Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. Biocatalysis and Biotransformation, 2006, 24, 419-425.	2.0	26
304	Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. Journal of Biotechnology, 2006, 121, 390-401.	3.8	107
305	Characterization of a Thermostable NADPH:FMN Oxidoreductase from the Mesophilic BacteriumBacillus subtilisâ€. Biochemistry, 2006, 45, 7083-7091.	2.5	53
306	Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere, 2006, 64, 359-370.	8.2	47

#	Article	IF	Citations
307	Enzymatic immobilization of 2,4,6-trinitrotoluene (TNT) biodegradation products onto model humic substances. Enzyme and Microbial Technology, 2006, 39, 1197-1204.	3.2	24
308	The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnology Journal, 2006, 1, 842-849.	3.5	22
309	Advances in biotechnology for fibre processing. Biotechnology Letters, 2006, 28, 679-680.	2.2	5
310	A new cuticle scale hydrolysing protease from Beauveria brongniartii. Biotechnology Letters, 2006, 28, 703-710.	2.2	19
311	New Enzyme-based Process Direction to Prevent Wool Shrinking without Substantial Tensile Strength Loss. Biotechnology Letters, 2006, 28, 711-716.	2.2	34
312	Detergent Formulations for Wool Domestic Washings Containing Immobilized Enzymes. Biotechnology Letters, 2006, 28, 725-731.	2.2	19
313	Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. Biotechnology Letters, 2006, 28, 741-747.	2.2	12
314	Restricting detergent protease action to surface of protein fibres by chemical modification. Applied Microbiology and Biotechnology, 2006, 72, 738-744.	3.6	26
315	New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. Journal of Proteomics, 2006, 69, 89-99.	2.4	125
316	Biocatalytic Single-Step Alkene Cleavage from Aryl Alkenes: An Enzymatic Equivalent to Reductive Ozonization. Angewandte Chemie - International Edition, 2006, 45, 5201-5203.	13.8	48
317	Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme and Microbial Technology, 2005, 36, 917-922.	3.2	81
318	Dyeing behaviour of cotton fabric bioscoured with pectate lyase and polygalacturonase. Coloration Technology, 2005, 121, 291-297.	1.5	25
319	Laccase kinetics of degradation and coupling reactions. Journal of Molecular Catalysis B: Enzymatic, 2005, 33, 23-28.	1.8	40
320	Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters, 2005, 3, 66-69.	16.2	74
321	Biotransformation of phenolics with laccase containing bacterial spores. Environmental Chemistry Letters, 2005, 3, 74-77.	16.2	71
322	Cutinase? A new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A, 2005, 43, 2448-2450.	2.3	106
323	Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. Journal of Polymer Science Part A, 2005, 43, 2749-2753.	2.3	32
324	Degradation of Azo Dyes by Laccase and Ultrasound Treatment. Applied and Environmental Microbiology, 2005, 71, 2600-2607.	3.1	66

#	Article	IF	Citations
325	Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere, 2005, 58, 417-422.	8.2	152
326	Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective. Biocatalysis and Biotransformation, 2005, 23, 53-69.	2.0	38
327	Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives. Biocatalysis and Biotransformation, 2004, 22, 331-339.	2.0	50
328	Enzymes in fibre processing. Biocatalysis and Biotransformation, 2004, 22, 297-297.	2.0	1
329	Influence of structure on dye degradation with laccase mediator systems. Biocatalysis and Biotransformation, 2004, 22, 315-324.	2.0	80
330	New enzymes with potential for PET surface modification. Biocatalysis and Biotransformation, 2004, 22, 341-346.	2.0	90
331	A New Alkali-Thermostable Azoreductase from Bacillus sp. Strain SF. Applied and Environmental Microbiology, 2004, 70, 837-844.	3.1	210
332	Predicting Dye Biodegradation from Redox Potentials. Biotechnology Progress, 2004, 20, 1588-1592.	2.6	76
333	Production of Laccase byTrametes hirsuta Grown in an Immersion Bioreactor and its Application in the Docolorization of Dyes from a Leather Factory. Engineering in Life Sciences, 2004, 4, 233-238.	3.6	46
334	Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy. Biotechnology and Bioengineering, 2004, 87, 552-563.	3.3	117
335	Application of power ultrasound for azo dye degradation. Ultrasonics Sonochemistry, 2004, 11, 177-182.	8.2	118
336	Stainless steel sponge: a novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes. Bioresource Technology, 2004, 95, 67-72.	9.6	141
337	Chemical modification of proteases for wool cuticle scale removal. Biocatalysis and Biotransformation, 2004, 22, 299-305.	2.0	32
338	Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. Biotechnology Letters, 2003, 25, 1473-1477.	2.2	131
339	New substrates for reliable enzymes: enzymatic modification of polymers. Current Opinion in Biotechnology, 2003, 14, 577-582.	6.6	124
340	Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton. Macromolecular Materials and Engineering, 2003, 288, 807-810.	3.6	84
341	An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme and Microbial Technology, 2003, 33, 766-774.	3.2	104
342	Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzyme and Microbial Technology, 2003, 33, 775-785.	3.2	61

#	Article	IF	Citations
343	Polymerization of Guaiacol and a Phenolic \hat{l}^2 -O-4-Substructure by Trametes hirsuta Laccase in the Presence of ABTS. Biotechnology Progress, 2003, 19, 1505-1509.	2.6	36
344	Purification and Properties of a Feruloyl Esterase Involved in Lignocellulose Degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 2003, 69, 5622-5626.	3.1	61
345	Protein interactions in enzymatic processes in textiles. Electronic Journal of Biotechnology, 2003, 6, .	2.2	2
346	Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. Journal of Biotechnology, 2002, 93, 87-94.	3.8	124
347	Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Research, 2002, 36, 1449-1456.	11.3	236
348	An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Applied Microbiology and Biotechnology, 2002, 60, 313-319.	3.6	44
349	Monitoring on-line desalted lignocellulosic hydrolysates by microdialysis sampling micro-high performance anion exchange chromatography with integrated pulsed electrochemical detection/mass spectrometry. Biotechnology and Bioengineering, 2002, 78, 822-828.	3.3	18
350	Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors. Bioresource Technology, 2002, 81, 19-24.	9.6	42
351	Production of laccase by a newly isolated strain of Trametes modesta. Bioresource Technology, 2002, 84, 259-263.	9.6	110
352	Studies of stabilization of native catalase using additives. Enzyme and Microbial Technology, 2002, 30, 387-391.	3.2	79
353	Investigations on the laccase-catalyzed polymerization of lignin model compounds using size-exclusion HPLC. Enzyme and Microbial Technology, 2002, 31, 403-410.	3.2	90
354	Voltammetric monitoring of laccase-catalysed mediated reactions. Bioelectrochemistry, 2002, 58, 149-156.	4.6	110
355	Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnology Letters, 2002, 24, 173-176.	2.2	31
356	Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 2001, 89, 131-139.	3.8	227
357	Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. Journal of Biotechnology, 2001, 89, 147-153.	3.8	64
358	Biotechnology in the textile industryâ€"perspectives for the new millennium. Journal of Biotechnology, 2001, 89, 89-90.	3.8	35
359	Characterization of a chitinase and an endo- \hat{l}^2 -1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology and Biotechnology, 2001, 56, 137-143.	3.6	138
360	A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles, 2001, 5, 423-429.	2.3	50

#	Article	IF	CITATIONS
361	Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme and Microbial Technology, 2001, 28, 815-819.	3.2	105
362	Bio-preparation of cotton fabrics. Enzyme and Microbial Technology, 2001, 29, 357-362.	3.2	157
363	"In Situ―Enzymatically Prepared Polymers for Wool Coloration. Macromolecular Materials and Engineering, 2001, 286, 691.	3.6	49
364	Effect of temperature and bath composition on the dyeing of cotton with catalase-treated bleaching effluent. Coloration Technology, 2001, 117, 166-170.	1.5	18
365	Dyeing in catalase-treated bleaching baths. Coloration Technology, 2001, 117, 1-5.	1.5	36
366	Indigo Degradation with Laccases from <i>Polyporus sp.</i> and <i>Sclerotium rolfsii</i> Textile Reseach Journal, 2001, 71, 420-424.	2.2	25
367	Polyoxometalates as promoters of laccase-assisted reactions. Journal of Molecular Catalysis B: Enzymatic, 2000, 9, 293-295.	1.8	4
368	Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles. Applied and Environmental Microbiology, 2000, 66, 1634-1638.	3.1	70
369	Enzymatic Decolorization of Textile Dyeing Effluents. Textile Reseach Journal, 2000, 70, 409-414.	2.2	90
370	Influence of Cellulases on Indigo Backstaining. Textile Reseach Journal, 2000, 70, 628-632.	2.2	43
371	Indigo-Cellulase Interactions. Textile Reseach Journal, 2000, 70, 532-536.	2.2	37
372	Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta. Applied and Environmental Microbiology, 2000, 66, 3357-3362.	3.1	644
373	Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. Journal of Biotechnology, 2000, 80, 127-134.	3.8	83
374	Exploitation of the tropical oil seed plant Jatropha curcas L Bioresource Technology, 1999, 67, 73-82.	9.6	546
375	Esterase and lipase activity in Jatropha curcas L. Seeds. Journal of Biotechnology, 1999, 75, 117-126.	3.8	89
376	Xylan Binding Subsite Mapping in the Xylanase fromPenicillium simplicissimumUsing Xylooligosaccharides as Cryo-Protectantâ€,‡. Biochemistry, 1999, 38, 2403-2412.	2.5	70
377	Efficient production of mannan-degrading enzymes by the basidiomyceteSclerotium rolfsii. Applied Biochemistry and Biotechnology, 1998, 70-72, 939-953.	2.9	7
378	Lignin-hemicellulose complexes restrict enzymatic solubilization of mannan and xylan from dissolving pulp. Applied Microbiology and Biotechnology, 1998, 50, 390-395.	3.6	37

#	Article	IF	CITATIONS
379	Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme and Microbial Technology, 1998, 23, 133-140.	3.2	71
380	Effect of endoglucanases and hemicellulases in magnetic and flotation deinking of xerographic and laser-printed papers. Journal of Biotechnology, 1998, 65, 209-215.	3.8	63
381	The Synergistic Effects of Endoglucanase and Xylanase in Modifying Douglas Fir Kraft Pulp. ACS Symposium Series, 1998, , 75-87.	0.5	6
382	Enzymatic removal of hemicellulose from dissolving pulps. Biotechnology Letters, 1997, 19, 491-495.	2.2	58
383	Enzyme-supported oil extraction fromJatropha curcas Seeds. Applied Biochemistry and Biotechnology, 1997, 63-65, 449-456.	2.9	18
384	Biogas production from Jatropha curcas press-cake. Applied Biochemistry and Biotechnology, 1997, 63-65, 457-467.	2.9	52
385	Mode of depolymerisation of hemicellulose by various mannanases and xylanases in relation to their ability to bleach softwood pulp. Applied Microbiology and Biotechnology, 1997, 47, 658-662.	3.6	47
386	Purification and properties of an acidic $\hat{l}\pm$ -mannanase from Sclerotium rolfsii. Journal of Biotechnology, 1996, 45, 165-172.	3.8	64
387	Two mannanases from Sclerotium rolfsii in total chlorine free bleaching of softwood kraft pulp. Journal of Biotechnology, 1996, 50, 181-188.	3.8	18
388	Mannan-degrading enzymes from Sclerotium rolfsii: Characterisation and synergism of two endo \hat{l}^2 -mannanases and a \hat{l}^2 -mannosidase. Bioresource Technology, 1996, 58, 127-135.	9.6	62
389	Enzymatic Synthesis of 100% Lignin Biobased Granules as Fertilizer Storage and Controlled Slow Release Systems. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	14