
Andreas Hecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264209/publications.pdf Version: 2024-02-01

ANDREAS HECHT

#	Article	IF	CITATIONS
1	Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell, 1995, 80, 583-592.	28.9	799
2	Spreading of transcriptional represser SIR3 from telomeric heterochromatin. Nature, 1996, 383, 92-96.	27.8	526
3	Mediator Is a Transducer of Wnt/β-Catenin Signaling. Journal of Biological Chemistry, 2006, 281, 14066-14075.	3.4	260
4	Curbing the nuclear activities of $\hat{l}^2 \hat{a} \in \hat{c}$ atenin. EMBO Reports, 2000, 1, 24-28.	4.5	163
5	Functional Characterization of Multiple Transactivating Elements in β-Catenin, Some of Which Interact with the TATA-binding Proteinin Vitro. Journal of Biological Chemistry, 1999, 274, 18017-18025.	3.4	162
6	The Microphthalmia-Associated Transcription Factor Mitf Interacts with β-Catenin To Determine Target Gene Expression. Molecular and Cellular Biology, 2006, 26, 8914-8927.	2.3	158
7	Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods in Enzymology, 1999, 304, 399-414.	1.0	156
8	Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets. Nucleic Acids Research, 2010, 38, 1964-1981.	14.5	125
9	Dynamic chromatin: The regulatory domain organization of eukaryotic gene loci. Journal of Cellular Biochemistry, 1991, 47, 99-108.	2.6	118
10	Trans-repression of β-Catenin Activity by Nuclear Receptors. Journal of Biological Chemistry, 2003, 278, 48137-48145.	3.4	111
11	The C-terminal transactivation domain of β-catenin is necessary and sufficient for signaling by the LEF-1/β-catenin complex in Xenopus laevis. Mechanisms of Development, 1999, 81, 65-74.	1.7	97
12	Identification of a Promoter-specific Transcriptional Activation Domain at the C Terminus of the Wnt Effector Protein T-cell Factor 4. Journal of Biological Chemistry, 2003, 278, 3776-3785.	3.4	85
13	Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures. Experimental Cell Research, 2007, 313, 572-587.	2.6	84
14	Inhibition of GSK3 differentially modulates NF-κB, CREB, AP-1 and β-catenin signaling in hepatocytes, but fails to promote TNF-α-induced apoptosis. Experimental Cell Research, 2008, 314, 1351-1366.	2.6	69
15	E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development (Cambridge), 2005, 132, 965-976.	2.5	64
16	SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genetics, 2017, 13, e1007109.	3.5	52
17	Differential Control of Wnt Target Genes Involves Epigenetic Mechanisms and Selective Promoter Occupancy by T-Cell Factors. Molecular and Cellular Biology, 2007, 27, 8164-8177.	2.3	51
18	Canonical Wnt Signaling Controls Proliferation of Retinal Stem/Progenitor Cells in Postembryonic <i>Xenopus</i> Eyes. Stem Cells, 2008, 26, 2063-2074.	3.2	51

ANDREAS HECHT

#	Article	IF	CITATIONS
19	Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene, 2020, 39, 3893-3909.	5.9	45
20	Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression. Nucleic Acids Research, 2012, 40, 9455-9469.	14.5	39
21	Mapping DNA Interaction Sites of Chromosomal Proteins Crosslinking Studies in Yeast. , 1999, 119, 469-480.		36
22	SNAIL1 combines competitive displacement of ASCL2 andÂepigenetic mechanisms to rapidly silence the EPHB3 tumor suppressor in colorectal cancer. Molecular Oncology, 2015, 9, 335-354.	4.6	34
23	Silencing of the EPHB3 tumor-suppressor gene in human colorectal cancer through decommissioning of a transcriptional enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4886-4891.	7.1	32
24	SNAIL1 employs β ateninâ€LEF1 complexes to control colorectal cancer cell invasion and proliferation. International Journal of Cancer, 2020, 146, 2229-2242.	5.1	32
25	Analysis of regulatory elements of E-cadherin with reporter gene constructs in transgenic mouse embryos. Developmental Dynamics, 2003, 227, 238-245.	1.8	31
26	Oncogenic transformation by \hat{l}^2 -catenin: deletion analysis and characterization of selected target genes. Oncogene, 2002, 21, 6983-6991.	5.9	27
27	Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of <i>CDX1</i> and <i>EPHB</i> tumor suppressor genes in colorectal cancer. Epigenetics, 2011, 6, 610-622.	2.7	24
28	Genome-wide mapping of DNA-binding sites identifies stemness-related genes as directly repressed targets of SNAIL1 in colorectal cancer cells. Oncogene, 2019, 38, 6647-6661.	5.9	24
29	Modeling Wnt/β-Catenin Target Gene Expression in APC and Wnt Gradients Under Wild Type and Mutant Conditions. Frontiers in Physiology, 2013, 4, 21.	2.8	20
30	Acetylation of Human TCF4 (TCF7L2) Proteins Attenuates Inhibition by the HBP1 Repressor and Induces a Conformational Change in the TCF4::DNA Complex. PLoS ONE, 2013, 8, e61867.	2.5	19
31	ZEB1 is neither sufficient nor required for epithelial-mesenchymal transition in LS174T colorectal cancer cells. Biochemical and Biophysical Research Communications, 2017, 482, 1226-1232.	2.1	19
32	Snapshots of Protein Dynamics and Post-translational Modifications In One Experiment—β-Catenin and Its Functions. Molecular and Cellular Proteomics, 2011, 10, M110.007377.	3.8	18
33	Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1353-1367.	1.9	18
34	Canonical BMP Signaling Executes Epithelial-Mesenchymal Transition Downstream of SNAIL1. Cancers, 2020, 12, 1019.	3.7	17
35	SMAD4 mutations do not preclude epithelial–mesenchymal transition in colorectal cancer. Oncogene, 2022, 41, 824-837.	5.9	12
36	4â€Aminoethylaminoâ€emodin – a novel potent inhibitor of GSKâ€3β– acts as an insulinâ€sensitizer avoidin downstream effects of activated βâ€catenin. Journal of Cellular and Molecular Medicine, 2010, 14, 1276-1293.	g 3.6	11

#	Article	IF	CITATIONS
37	Canonical TGFβ signaling induces collective invasion in colorectal carcinogenesis through a Snail1- and Zeb1-independent partial EMT. Oncogene, 2022, 41, 1492-1506.	5.9	10
38	Mathematical modelling suggests a differential impact ofÂβâ€transducin repeatâ€containing protein paralogues on Wnt/βâ€catenin signalling dynamics. FEBS Journal, 2015, 282, 1080-1096.	4.7	8
39	Rat antibodies as probes for the characterization of progesterone receptor A and B proteins from laying hen oviduct cytosol. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 968, 96-108.	4.1	Ο