Thomas Boehm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/82641/publications.pdf Version: 2024-02-01

THOMAS BOEHM

#	Article	IF	CITATIONS
1	Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505, 174-179.	27.8	689
2	New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature, 1994, 372, 103-107.	27.8	629
3	MHC Class I Peptides as Chemosensory Signals in the Vomeronasal Organ. Science, 2004, 306, 1033-1037.	12.6	546
4	Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature, 2006, 441, 992-996.	27.8	334
5	Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proceedings of the United States of America, 2005, 102, 4414-4418.	7.1	324
6	Evolutionary implications of a third lymphocyte lineage in lampreys. Nature, 2013, 501, 435-438.	27.8	180
7	A thymus candidate in lampreys. Nature, 2011, 470, 90-94.	27.8	175
8	Evolution of Genetic Networks Underlying the Emergence of Thymopoiesis in Vertebrates. Cell, 2009, 138, 186-197.	28.9	168
9	BMP Signaling Is Required for Normal Thymus Development. Journal of Immunology, 2005, 175, 5213-5221.	0.8	156
10	Evidence for a Functional Second Thymus in Mice. Science, 2006, 312, 284-287.	12.6	142
11	Design principles of adaptive immune systems. Nature Reviews Immunology, 2011, 11, 307-317.	22.7	120
12	Essential role of <i>c-myb</i> in definitive hematopoiesis is evolutionarily conserved. Proceedings of the United States of America, 2010, 107, 17304-17308.	7.1	119
13	Conserved Functions of Ikaros in Vertebrate Lymphocyte Development: Genetic Evidence for Distinct Larval and Adult Phases of T Cell Development and Two Lineages of B Cells in Zebrafish. Journal of Immunology, 2006, 177, 2463-2476.	0.8	115
14	Evolution of Vertebrate Immunity. Current Biology, 2012, 22, R722-R732.	3.9	115
15	Thymopoiesis in mice depends on a <i>Foxn1</i> -positive thymic epithelial cell lineage. Proceedings of the United States of America, 2010, 107, 16613-16618.	7.1	110
16	Synergistic, Context-Dependent, and Hierarchical Functions of Epithelial Components in Thymic Microenvironments. Cell, 2012, 149, 159-172.	28.9	110
17	Thymus involution and regeneration: two sides of the same coin?. Nature Reviews Immunology, 2013, 13, 831-838.	22.7	101
18	Quality Control in Self/Nonself Discrimination. Cell, 2006, 125, 845-858.	28.9	97

Тномаѕ Военм

#	Article	IF	CITATIONS
19	Evolution of lymphoid tissues. Trends in Immunology, 2012, 33, 315-321.	6.8	97
20	Origin and Evolution of Adaptive Immunity. Annual Review of Animal Biosciences, 2014, 2, 259-283.	7.4	97
21	Evolution of Alternative Adaptive Immune Systems in Vertebrates. Annual Review of Immunology, 2018, 36, 19-42.	21.8	92
22	Intravital Imaging of Thymopoiesis Reveals Dynamic Lympho-Epithelial Interactions. Immunity, 2012, 36, 298-309.	14.3	79
23	Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mechanisms of Development, 1999, 89, 215-221.	1.7	76
24	Evolution of the Immune System in the Lower Vertebrates. Annual Review of Genomics and Human Genetics, 2012, 13, 127-149.	6.2	72
25	Genetic dissection of thymus development in mouse and zebrafish. Immunological Reviews, 2003, 195, 15-27.	6.0	69
26	Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3201-E3210.	7.1	56
27	Maintenance of Thymic Epithelial Phenotype Requires Extrinsic Signals in Mouse and Zebrafish. Journal of Immunology, 2008, 181, 5272-5277.	0.8	51
28	Genetic Evidence for an Evolutionarily Conserved Role of IL-7 Signaling in T Cell Development of Zebrafish. Journal of Immunology, 2011, 186, 7060-7066.	0.8	49
29	Organization of lamprey <i>variable lymphocyte receptor C</i> locus and repertoire development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6043-6048.	7.1	49
30	The immunogenetics of sexual parasitism. Science, 2020, 369, 1608-1615.	12.6	46
31	A zebrafish orthologue (whnb) of the mouse nude gene is expressed in the epithelial compartment of the embryonic thymic rudiment. Mechanisms of Development, 2002, 118, 179-185.	1.7	43
32	Zebrafish model for allogeneic hematopoietic cell transplantation not requiring preconditioning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4327-4332.	7.1	34
33	Conversion of the Thymus into a Bipotent Lymphoid Organ by Replacement of Foxn1 with Its Paralog, Foxn4. Cell Reports, 2014, 8, 1184-1197.	6.4	33
34	Developmental dynamics of two bipotent thymic epithelial progenitor types. Nature, 2022, 606, 165-171.	27.8	32
35	Selection of the lamprey VLRC antigen receptor repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14834-14839.	7.1	30
36	Elevated levels of Wnt signaling disrupt thymus morphogenesis and function. Scientific Reports, 2017, 7, 785.	3.3	27

3

Тномаѕ Военм

#	Article	IF	CITATIONS
37	Self-renewal of thymocytes in the absence of competitive precursor replenishment. Journal of Experimental Medicine, 2012, 209, 1397-1400.	8.5	24
38	Forward Genetic Screens in Zebrafish Identify Pre-mRNA-Processing Pathways Regulating Early T Cell Development. Cell Reports, 2016, 17, 2259-2270.	6.4	24
39	Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3211-E3220.	7.1	23
40	Mate choice in sticklebacks reveals that immunogenes can drive ecological speciation. Behavioral Ecology, 2017, 28, 953-961.	2.2	21
41	Fundamental parameters of the developing thymic epithelium in the mouse. Scientific Reports, 2018, 8, 11095.	3.3	20
42	Cytidine deaminase 2 is required for <i>VLRB</i> antibody gene assembly in lampreys. Science Immunology, 2020, 5, .	11.9	19
43	Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase III alpha. European Journal of Immunology, 2010, 40, 2379-2384.	2.9	18
44	Genomic donor cassette sharing during <i>>VLRA</i> and <i>>VLRC</i> assembly in jawless vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14828-14833.	7.1	18
45	Cooperative interaction of BMP signalling and Foxn1 gene dosage determines the size of the functionally active thymic epithelial compartment. Scientific Reports, 2017, 7, 8492.	3.3	17
46	A yeast artificial chromosome contig on mouse chromosome 11 encompassing the nu locus. European Journal of Immunology, 1994, 24, 1721-1723.	2.9	15
47	Genetic and non-genetic determinants of thymic epithelial cell number and function. Scientific Reports, 2017, 7, 10314.	3.3	15
48	Transgenerational inheritance of impaired larval T cell development in zebrafish. Nature Communications, 2020, 11, 4505.	12.8	15
49	Lymphocyte-Specific Function of the DNA Polymerase Epsilon Subunit Pole3 Revealed by Neomorphic Alleles. Cell Reports, 2020, 31, 107756.	6.4	12
50	A missense mutation in zbtb17 blocks the earliest steps of T cell differentiation in zebrafish. Scientific Reports, 2017, 7, 44145.	3.3	10
51	Retracing the evolutionary emergence of thymopoiesis. Science Advances, 2020, 6, .	10.3	10
52	Co-evolution of mutagenic genome editors and vertebrate adaptive immunity. Current Opinion in Immunology, 2020, 65, 32-41.	5.5	9
53	Pervasive changes of mRNA splicing in <i>upf1</i> -deficient zebrafish identify <i>rpl10a</i> as a regulator of T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15799-15808.	7.1	9
54	Evolutionary transition from degenerate to nonredundant cytokine signaling networks supporting intrathymic T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26759-26767.	7.1	8

Тномаѕ Военм

#	Article	IF	CITATIONS
55	Antigen receptor repertoires of one of the smallest known vertebrates. Science Advances, 2021, 7, .	10.3	8
56	Evolution of thymopoietic microenvironments. Open Biology, 2021, 11, 200383.	3.6	8
57	Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish. Scientific Reports, 2016, 6, 19634.	3.3	7
58	Epigenetic Protection of Vertebrate Lymphoid Progenitor Cells by Dnmt1. IScience, 2020, 23, 101260.	4.1	7
59	Genetic landscape of T cells identifies synthetic lethality for T-ALL. Communications Biology, 2021, 4, 1201.	4.4	6
60	Autoimmunity associated with chemically induced thymic dysplasia. International Immunology, 2017, 29, 385-390.	4.0	4
61	Same Function, Different Origins: Multipotent Stromal Precursors in Lymphoid Tissues. Cell Stem Cell, 2013, 12, 501-503.	11.1	3
62	Form follows function, function follows form: how lymphoid tissues enable and constrain immune reactions. Immunological Reviews, 2016, 271, 4-9.	6.0	3
63	Immunological tolerance to LCMV antigens differently affects control of acute and chronic virus infection in mice. European Journal of Immunology, 2018, 48, 120-127.	2.9	2
64	Caught in the Act: Reprogramming of Adipocytes into Lymph-Node Stroma. Immunity, 2012, 37, 596-598.	14.3	1