Alain Polian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8264062/publications.pdf

Version: 2024-02-01

280 papers 9,671 citations

44069 48 h-index 49909 87 g-index

289 all docs

289 docs citations

times ranked

289

7638 citing authors

#	Article	IF	CITATIONS
1	Elastic constants of gallium nitride. Journal of Applied Physics, 1996, 79, 3343-3344.	2.5	642
2	Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Physical Review B, 1992, 45, 83-89.	3.2	544
3	High-pressure Raman spectroscopy study of wurtzite ZnO. Physical Review B, 2002, 65, .	3.2	468
4	Pressure-induced coordination changes in crystalline and vitreousGeO2. Physical Review Letters, 1989, 63, 398-401.	7.8	336
5	Elastic constants of boron nitride. Journal of Applied Physics, 1994, 76, 832-834.	2.5	298
6	Towards the Identification of the Dominant Donor in GaN. Physical Review Letters, 1995, 75, 296-299.	7.8	295
7	Local structure of condensed zinc oxide. Physical Review B, 2003, 68, .	3.2	249
8	High-pressure phase transition and phase diagram of gallium arsenide. Physical Review B, 1991, 44, 4214-4234.	3.2	172
9	Pressure-Induced Valence Tautomerism in Cobalto-Quinone Complexes:Â An X-ray Absorption Study of the Low-Spin [Coll(3,5-DTBSQ)(3,5-DTBCat)(phen)] to High-Spin [Coll(3,5-DTBSQ)2(phen)] Interconversion. Inorganic Chemistry, 1996, 35, 2846-2852.	4.0	157
10	New High-Pressure Phase ofH2O: Ice X. Physical Review Letters, 1984, 52, 1312-1314.	7.8	152
11	Lattice Dynamics of Icosahedralα-Boron under Pressure. Physical Review Letters, 1997, 78, 693-696.	7.8	152
12	High Pressure Behavior of Silicon Clathrates: A New Class of Low Compressibility Materials. Physical Review Letters, 1999, 83, 5290-5293.	7.8	146
13	Brillouin scattering and three-body forces in argon at high pressures. Physical Review B, 1986, 33, 7192-7200.	3.2	134
14	Raman-scattering studies of aluminum nitride at high pressure. Physical Review B, 1993, 47, 2874-2877.	3.2	131
15	Elastic properties of a-SiO 2 up to 2300 K from Brillouin scattering measurements. Europhysics Letters, 2002, 57, 375-381.	2.0	124
16	Dynamics of the Magnetic and Structurall±â^'εPhase Transition in Iron. Physical Review Letters, 2004, 93, 255503. Two-dimensional pressure-induced electronic topological transition in Bi <mml:math< td=""><td>7.8</td><td>119</td></mml:math<>	7.8	119
17	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mithed display="inline"> <mml:mrow><mml:msub><mml:mrow ><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> Te <mml:math xmlln:mml="http://www.w3.org/1998/Math/Math/ML"</mml:math 	3.2	117
18	Ospiay="mine"> <mmine"> <mmine< td=""><td>3.2</td><td>105</td></mmine<></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine"></mmine">	3.2	105

#	Article	IF	Citations
19	Room-temperature densification of a-SiO2 versus pressure. Physical Review B, 1990, 41, 6086-6087.	3.2	98
20	Elastic Properties and Density of Helium up to 20 GPa. Europhysics Letters, 1986, 2, 849-855.	2.0	92
21	Trapping of cubic ZnO nanocrystallites at ambient conditions. Applied Physics Letters, 2002, 81, 4820-4822.	3.3	86
22	Brillouin scattering fromH2O: Liquid, ice VI, and ice VII. Physical Review B, 1983, 27, 6409-6412.	3.2	83
23	Vibrational properties of delafossiteCuGaO2at ambient and high pressures. Physical Review B, 2005, 72,	3.2	74
24	ZnTe at high pressure: X-ray-absorption spectroscopy and x-ray-diffraction studies. Physical Review B, 1993, 48, 8683-8693.	3.2	71
25	Optical properties of cubic boron nitride. Physical Review B, 1995, 52, 8854-8863.	3.2	71
26	Solid krypton: Equation of state and elastic properties. Physical Review B, 1989, 39, 1332-1336.	3.2	69
27	Complex high-pressure polymorphism of barium tungstate. Physical Review B, 2012, 86, .	3.2	66
28	Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence. Journal of Applied Physics, 2013, 113, .	2.5	66
29	Low-frequency lattice vibrations of \hat{l} -GaSe compared to $\ddot{l}\mu$ - and \hat{l}^3 -polytypes. Solid State Communications, 1976, 19, 1079-1082.	1.9	65
30	X-ray absorption spectroscopy on solid krypton up to 20 GPa. Physical Review B, 1989, 39, 3369-3373.	3.2	64
31	Structural evolution of theCuGaO2delafossite under high pressure. Physical Review B, 2004, 69, .	3.2	64
32	Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure. Nature Materials, 2007, 6, 698-702.	27.5	64
33	Phase transitions in wolframite-type <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mtext>CdWO</mml:mtext></mml:mrow><mml:high 2009,<="" and="" b,="" by="" density-functional="" physical="" pressure="" raman="" review="" spectroscopy="" studied="" td="" theory.=""><td>ന്നു<u>.4</u><td>nl:mn></td></td></mml:high></mml:mrow></mml:math>	ന്നു <u>.4</u> <td>nl:mn></td>	nl:mn>
34	X-ray Absorption Spectroscopic Study of the Temperature and Pressure Dependence of the Electronic Spin States in Several Iron(II) and Cobalt(II) Tris(pyrazolyl)borate Complexes. Inorganic Chemistry, 1997, 36, 5580-5588.	4.0	62
35	Water as a Dense Icelike Component in Silicate Glasses. , 1998, 281, 396-398.		62
36	High pressure monoclinic phases of Sb2Te3. Physica B: Condensed Matter, 2012, 407, 3781-3789.	2.7	59

#	Article	IF	Citations
37	Elastic properties of GaS under high pressure by Brillouin scattering. Physical Review B, 1982, 25, 2767-2775.	3.2	58
38	Pressure Control of Cuprophilic Interactions in a Luminescent Mechanochromic Copper Cluster. Inorganic Chemistry, 2015, 54, 9821-9825.	4.0	57
39	Optical studies of methane under high pressure. Physical Review B, 1987, 36, 9196-9201.	3.2	56
40	High-pressure EXAFS measurements of solid and liquid Kr. Physical Review B, 1996, 54, 9086-9098.	3.2	55
41	Pressure-induced spin-state crossovers at room temperature in iron(II) complexes: comparative analysis; a XANES investigation of some new transitionsDedicated to the memory of Professor Olivier Kahn New Journal of Chemistry, 2002, 26, 313-322.	2.8	55
42	Pressure-induced disappearance of the local rhombohedral distortion in BaTiO 3. Europhysics Letters, 2006, 74, 706-711.	2.0	55
43	Diffusionless < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mi > \hat{l} < /mml:mi > < mml:mi > \hat{l} < /mml:mi > < mml:mi > \hat{l} < / mml:mi > < mml:mi > \hat{l} < / mml:mi > < mml:	7.8	55
44	Structure Solution of the High-Pressure Phase of CuWO ₄ and Evolution of the Jahnâ€"Teller Distortion. Chemistry of Materials, 2011, 23, 4220-4226.	6.7	55
45	Raman scattering study of wurtzite and rocksalt InN under high pressure. Physical Review B, 2006, 73, .	3.2	53
46	Brillouin scattering at high pressure: an overview. Journal of Raman Spectroscopy, 2003, 34, 633-637.	2.5	52
47	High-pressure phase transition in gallium phosphide: An x-ray-absorption spectroscopy study. Physical Review B, 1989, 40, 9709-9714.	3.2	50
48	XMCD under pressure at the FeKedge on the energy-dispersive beamline of the ESRF. Journal of Synchrotron Radiation, 2004, 11, 423-427.	2.4	50
49	High-Pressure Study of X-Ray Diffuse Scattering in Ferroelectric Perovskites. Physical Review Letters, 2007, 99, 117601.	7.8	49
50	Dielectric function inCdxHg1â^'xTemixed crystals. Physical Review B, 1976, 13, 3558-3565.	3.2	48
51	Polyamorphic transition of germanium under pressure. Physical Review B, 2004, 69, .	3.2	48
52	Irreversible structural changes in vitreousB2O3under pressure. Physical Review B, 1996, 54, 152-155.	3.2	47
53	Ionic layered PbFCl-type compounds under high pressure. Physical Review B, 1999, 59, 4011-4022.	3.2	47
54	Structural Studies of CulnS ₂ and CulnSe ₂ under High Pressure. Physica Status Solidi (B): Basic Research, 1996, 198, 433-438.	1.5	46

#	Article	IF	CITATIONS
55	Complete determination of the elastic moduli of î±-quartz under hydrostatic pressure up to 1 GPa: an ultrasonic study. Journal of Physics Condensed Matter, 2007, 19, 436228.	1.8	46
56	Elastic constants of α-GeO2. Journal of Applied Physics, 1998, 83, 3018-3020.	2.5	45
57	Luminescence mechanochromism of copper iodide clusters: a rational investigation. Dalton Transactions, 2019, 48, 7899-7909.	3.3	45
58	Pressure-Induced Spin-State Crossovers in Six-Coordinate FellLnLâ€~m(NCS)2Complexes with L = Lâ€~ and L ≠Lâ€~: A XANES Investigation. Inorganic Chemistry, 1996, 35, 574-580.	4.0	44
59	Local disorder studied in SrTiO3at low temperature by EXAFS spectroscopy. Physical Review B, 1994, 49, 12451-12456.	3.2	43
60	Sound velocities and refractive index of densifieda-SiO2to 25 GPa. Physical Review B, 1993, 47, 13979-13982.	3.2	42
61	Pressure-induced phase transitions in amorphous and metastable crystalline germanium by Raman scattering, x-ray spectroscopy, and <i>ab initio</i> calculations. Physical Review B, 2009, 80, .	3.2	42
62	Water and the compressibility of silicate glasses: A Brillouin spectroscopic study. American Mineralogist, 2012, 97, 455-467.	1.9	39
63	Crystal structure of a new high pressure polymorph of GaS. Solid State Communications, 1982, 44, 853-855.	1.9	38
64	High-pressure behavior of Raman modes inCuGaS2. Physical Review B, 1992, 46, 15092-15101.	3.2	38
65	X-ray absorption spectroscopy and x-ray magnetic circular dichroism simultaneous measurements under high pressure: the iron bcc–hcp transition case. Journal of Physics Condensed Matter, 2005, 17, S957-S966.	1.8	38
66	Pressure-induced amorphization and a possible polyamorphism transition in nanosizedTiO2: An x-ray absorption spectroscopy study. Physical Review B, 2008, 77, .	3.2	37
67	High-pressure x-ray-absorption study of GaSe. Physical Review B, 2002, 65, .	3.2	36
68	Equation of state and phase transitions in AgGaS2 and AgGaSe2. Journal of Physics and Chemistry of Solids, 1995, 56, 481-484.	4.0	35
69	Cinnabar phase in ZnSe at high pressure. Physical Review B, 2001, 65, .	3.2	35
70	Refractive index determination in diamond anvil cells: Results for argon. Journal of Applied Physics, 1986, 60, 3479-3481.	2.5	34
71	Ill–V Semiconducting Nitrides: Physical Properties under Pressure. Japanese Journal of Applied Physics, 1993, 32, 334.	1.5	34
72	Pressure induced amorphization of Gel4molecular crystals. Physical Review Letters, 1994, 72, 2733-2736.	7.8	34

#	Article	IF	Citations
73	X-ray absorption and diffraction spectroscopy of icosahedral Al-Cu-Fe quasicrystals under high pressure. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 855-866.	0.6	34
74	Bromine metallization studied by X-ray absorption spectroscopy. European Physical Journal B, 2000, 17, 227-233.	1.5	33
75	High-pressure and high-temperature x-ray absorption study of liquid and solid gallium. Physical Review B, 2001, 65, .	3.2	33
76	Phonon modes and stability of GaS up to 200 kilobars. Physical Review B, 1980, 22, 3049-3058.	3.2	32
77	Temperature-, Pressure- and Light-Induced Electronic Spin Conversions in Transition Metal Complexes. Molecular Crystals and Liquid Crystals, 1993, 234, 247-254.	0.3	32
78	Memory effects in pressure induced amorphousAlPO4. Physical Review Letters, 1993, 71, 3143-3145.	7.8	32
79	Interplay between morphology and metallization in amorphous-amorphous transitions. Physical Review B, 2008, 78, .	3.2	31
80	Absence of abrupt pressure-induced magnetic transitions in magnetite. Physical Review B, 2010, 82, .	3.2	31
81	Vitreous Silica Distends in Helium Gas: Acoustic Versus Static Compressibilities. Physical Review Letters, 2012, 109, 245504.	7.8	31
82	Stability of icosahedral Al-Cu-Fe and two approximant phases under high pressure up to 35 GPa. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 72, 101-113.	0.6	30
83	Transverse effective charge and its pressure dependence in GaN single crystals. Physical Review B, 1999, 60, 1480-1483.	3.2	29
84	High-Pressure Raman Scattering of CaWO ₄ Up to 46.3 GPa: Evidence of a New High-Pressure Phase. Inorganic Chemistry, 2014, 53, 9729-9738.	4.0	29
85	X-ray-absorption spectroscopy on strontium titanate under high pressure. Physical Review B, 1990, 42, 8494-8498.	3.2	28
86	Raman scattering from cubic boron nitride up to 1600 K. Journal of Applied Physics, 1992, 72, 1955-1956.	2.5	28
87	Two magnon resonant Raman scattering in transition metal oxides. Journal of Magnetism and Magnetic Materials, 1978, 9, 83-85.	2.3	27
88	Brillouin study of liquid and solid ammonia up to 20 GPa. Solid State Communications, 1988, 68, 149-153.	1.9	27
89	Elastic properties of silicate melts up to 2350 K from Brillouin scattering. Geophysical Research Letters, 1996, 23, 423-426.	4.0	27
90	Poroelastic Theory Applied to the Adsorption-Induced Deformation of Vitreous Silica. Journal of Physical Chemistry B, 2014, 118, 14519-14525.	2.6	27

#	Article	IF	Citations
91	Magnetic phase transitions in Fe 72 Pt 28 Invar compound studied by high-pressure X-ray magnetic circular dichroism and X-ray diffraction. Europhysics Letters, 1999, 47, 378-383.	2.0	26
92	High-pressure elastic properties of gallium phosphide. Physical Review B, 1999, 60, 1468-1470.	3.2	26
93	Polymorphism in Strontium Tungstate SrWO ₄ under Quasi-Hydrostatic Compression. Inorganic Chemistry, 2016, 55, 10406-10414.	4.0	25
94	Synthesis of Bulk BC8 Silicon Allotrope by Direct Transformation and Reduced-Pressure Chemical Pathways. Inorganic Chemistry, 2016, 55, 8943-8950.	4.0	25
95	Optical-absorption edge of Csl up to 58 GPa. Physical Review B, 1984, 30, 2309-2311.	3.2	24
96	High pressure Raman spectra of Î ² -form of l-glutamic acid. Vibrational Spectroscopy, 2012, 58, 181-187.	2.2	24
97	A variable coordination structure in Il–VI semiconductors: The cinnabar phase. Journal of Physics and Chemistry of Solids, 1995, 56, 555-558.	4.0	23
98	X-ray diffraction measurements in icosahedral Al-Pd-Mn up to 40 GPa. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1677-1688.	0.6	23
99	X-ray-absorption fine-structure study of ZnSexTe1â^x alloys. Journal of Applied Physics, 2004, 96, 1491-1498.	2.5	23
100	High pressure x-ray absorption spectroscopy at lower energy in the dispersive mode: application to Ce and FePO4. Journal of Physics Condensed Matter, 2005, 17, S883-S888.	1.8	23
101	α-boron at very high pressure: structural and vibrational properties. Journal of Physics: Conference Series, 2008, 121, 042017.	0.4	23
102	On the high-pressure phase transition in. European Physical Journal B, 1998, 1, 265-268.	1.5	22
103	Dispersive XAS at third-generation sources: strengths and limitations. Journal of Synchrotron Radiation, 1999, 6, 146-148.	2.4	22
104	Polarized Raman spectroscopy of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>v</mml:mi> <mml:mo>â^'</mml:mo> <mml:msul mathvariant="normal"> SiO <mml:mn>2</mml:mn> </mml:msul></mml:math> under rare-gas compression. Physical Review B, 2016, 93, .	b> <mml:m< td=""><td>¹ⁱ 22</td></mml:m<>	¹ⁱ 22
105	CuGa(SxSe1 â^' x)2 alloys at high pressure: Optical absorption and X-ray diffraction studies. Journal of Physics and Chemistry of Solids, 1995, 56, 507-516.	4.0	21
106	Phase relationships in mercury telluride under high temperature and pressure. Journal of Physics and Chemistry of Solids, 1995, 56, 525-530.	4.0	21
107	Experimental evidence of pressure-induced magnetic phase transition in Fe72Pt28 Invar alloy. Journal of Applied Physics, 1998, 83, 7291-7293.	2.5	21
108	The low frequency phonons dynamics in supercooled LiCl, 6H2O. Journal of Chemical Physics, 2009, 131, 124504.	3.0	21

#	Article	IF	CITATIONS
109	High-pressure Raman spectra of racemate dl-alanine crystals. Vibrational Spectroscopy, 2010, 54, 107-111.	2.2	21
110	Raman spectroscopy of monohydrated l-asparagine up to 30GPa. Vibrational Spectroscopy, 2015, 77, 35-39.	2.2	21
111	Elastic properties of BaTiO ₃ at high pressure. Phase Transitions, 1987, 9, 205-213.	1.3	20
112	Cations in glasses under ambient and non-ambient conditions. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 155-161.	1.4	20
113	Spatial distribution of electron concentration and strain in bulk GaN single crystals - relation to growth mechanism. Materials Research Society Symposia Proceedings, 1996, 449, 519.	0.1	20
114	Metalâ€Insulator Transition in GaN Crystals. Physica Status Solidi (B): Basic Research, 1996, 198, 223-233.	1.5	20
115	Prediction of cell variations with pressure of ionic layered crystal Application to the matlockite family. European Physical Journal B, 1999, 9, 49-57.	1.5	20
116	High-Pressure Structural Study of CuAlS2 and CuAlSe2. Physica Status Solidi (B): Basic Research, 1999, 211, 455-459.	1.5	20
117	Local environment of a diluted element under high pressure: Zn1â^'xMnxO probed by fluorescence x-ray absorption spectroscopy. Applied Physics Letters, 2006, 89, 231904.	3.3	20
118	Unveiling the electrochemical mechanisms of Li ₂ Fe(SO ₄) ₂ polymorphs by neutron diffraction and density functional theory calculations. Physical Chemistry Chemical Physics, 2016, 18, 14509-14519.	2.8	20
119	X ray absorption spectroscopy investigation of phase transition in Ge, GaAs and GaP. High Pressure Research, 1990, 4, 309-311.	1.2	19
120	Elasticity of BaFCl single crystal under hydrostatic pressure. European Physical Journal B, 1998, 5, 7-13.	1.5	19
121	Hypersonic velocity measurement using Brillouin scattering technique. Application to water under high pressure and temperature. Ultrasonics, 2006, 44, e1495-e1498.	3.9	19
122	Experimental and theoretical investigation of the stability of the monoclinic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mphase .<="" 2010,="" 81,="" and="" at="" b,="" high="" physical="" pressure="" review="" td="" temperature.=""><td>nn34<td>ıl:mn></td></td></mml:mphase></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nn34 <td>ıl:mn></td>	ıl:mn>
123	High pressure x-ray diffraction and extended x-ray absorption fine structure studies on ternary alloy Zn1â^xBexSe. Journal of Applied Physics, 2010, 108, 083533.	2.5	19
124	Tuning of the stoichiometry of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mrow> by compression. Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math>	> 312 ml:m	n>19:/mml:mr
125	Lattice relaxation in the highly-contrasted Zn1â^xBexSe alloy: An extended x-ray absorption fine structure study. Journal of Applied Physics, 2010, 108, 083539.	2.5	18
126	Raman spectroscopy of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mtext> B </mml:mtext> <mml:mrow> <mml:mn> 12 </mml:mn> <mml:mrow> <mml:msub> <mml:mtext> B </mml:mtext> <mml:mrow> <mml:mn> 12 </mml:mn> Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow>	3.2	18

#	Article	IF	CITATIONS
127	A combined XAS and XRD study of the high-pressure behaviour of GaAsO 4 berlinite. Europhysics Letters, 1997, 40, 533-538.	2.0	17
128	High-pressure X-ray diffraction of icosahedral Al-Cu-Ru and Al-Pd-Re quasicrystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 115-128.	0.6	17
129	High-pressure ultrasonic setup using the Paris–Edinburgh press: Elastic properties of single crystalline germanium up to 6 GPa. Review of Scientific Instruments, 2003, 74, 3712-3716.	1.3	17
130	New pressure-induced phase transitions of l-threonine crystal: A Raman spectroscopic study. Journal of Molecular Structure, 2015, 1092, 160-165.	3.6	17
131	Pressure-induced phase transition of nanocrystalline ZnSe. Journal of Physics Condensed Matter, 2005, 17, 5187-5200.	1.8	16
132	Lattice Dynamics of αâ€Boron from abâ€initio Calculation and Raman Scattering under High Pressure. Physica Status Solidi (B): Basic Research, 1996, 198, 115-119.	1.5	15
133	High Pressure X-Ray Absorption and Diffraction Study of InAs. High Pressure Research, 2002, 22, 331-335.	1.2	15
134	Unexpected value of transition pressure in the ionic layered BaFI compound observed by Raman scattering. Physical Review B, 2002, 66, .	3.2	15
135	Observation of the high-pressure Pmma phase in InAs: A combined X-ray absorption and diffraction study. Europhysics Letters, 2003, 61, 554-560.	2.0	15
136	High-pressure phase transformation of nanometric ZnSb prepared by mechanical alloying. Journal of Applied Physics, 2009, 106, 013509.	2.5	15
137	Bond length compressibility in hard ReB ₂ investigated by x-ray absorption under high pressure. Journal of Physics Condensed Matter, 2010, 22, 045701.	1.8	15
138	Brillouin scattering from GaS under hydrostatic pressure up to 17.5 GPa. Applied Physics Letters, 1981, 38, 334-336.	3.3	14
139	Physical properties of GaN and AlN under pressures up to 0.5 Mbar. Physica B: Condensed Matter, 1993, 185, 426-427.	2.7	14
140	Some scaling factors of physical properties dependent on phonons in the case of the families of the fluorite and of the matlockite. Journal of Physics and Chemistry of Solids, 1998, 59, 75-82.	4.0	14
141	High-pressure phase diagram ofZnSexTe1â^'xalloys. Physical Review B, 2005, 71, .	3.2	14
142	Ti K Pre-Edge in SrTiO3 under Pressure: Experiments and Full-Potential First-Principles Calculations. AIP Conference Proceedings, 2007, , .	0.4	14
143	Structural and optical high-pressure study of spinel-type MnIn2S4. Physica Status Solidi (B): Basic Research, 2007, 244, 229-233.	1.5	14
144	Pressure cycling of InN to 20 GPa: In situ transport properties and amorphization. Applied Physics Letters, 2010, 97, 032105.	3.3	14

#	Article	IF	CITATIONS
145	XRD and XAS structural study of CuAlO ₂ under high pressure. Journal of Physics Condensed Matter, 2013, 25, 115406.	1.8	14
146	Sound velocity measurement by ultrasonic and Brillouin scattering techniques in compounds with matlockite structure. High Temperatures - High Pressures, 1998, 30, 235-240.	0.3	14
147	Phase transition and sound velocity measurements in very small solid samples under high pressure by Brillouin scattering. Journal of the Acoustical Society of America, 1989, 86, 2257-2260.	1.1	13
148	Pressure-induced distortion of the amorphous tetrahedral network ina-GaSb: Direct evidence from EXAFS. Physical Review B, 1996, 54, R14242-R14245.	3.2	13
149	Full-multiple-scattering calculations on HgTe under high pressure at the mercuryL2,3x-ray-absorption edges. Physical Review B, 1997, 56, 5866-5875.	3.2	13
150	Icosahedral Ti–Zr–Ni and hydrogenated Ti–Zr–Ni quasicrystals under high pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 294-296, 804-805.	5.6	13
151	Structure of crystalline and amorphous Ge probed by X-ray absorption and diffraction techniques. High Pressure Research, 2004, 24, 93-99.	1.2	13
152	Pressure Induced Phase Transitions in Amorphous Ge. Physica Scripta, 2005, , 381.	2.5	13
153	Sound velocity in alumino-silicate liquids determined up to 2550K from Brillouin spectroscopy: glass transition and crossover temperatures. Journal of Non-Crystalline Solids, 2005, 351, 61-68.	3.1	13
154	Watching a metal collapse: Examining cerium's γ ↔ α transformation using X-ray diffraction of compressed single and polycrystals. Acta Materialia, 2011, 59, 6007-6016.	7.9	13
155	Optical phonon modes in rhombohedral boron monosulfide under high pressure. Journal of Applied Physics, 2015, 117, .	2.5	13
156	Elastic constants of the layer compound GaS. Journal De Physique (Paris), Lettres, 1982, 43, 405-409.	2.8	13
157	Zinc telluride under high pressure: An x-ray absorption study. High Pressure Research, 1992, 10, 412-415.	1.2	12
158	Structural Studies of Bulk Amorphous GaSb under High Pressures. Physica Status Solidi (B): Basic Research, 1996, 198, 503-508.	1.5	12
159	High-pressure Raman scattering from GaPO4. Solid State Communications, 2000, 114, 335-340.	1.9	12
160	Quartz as a pressure sensor in the infrared. High Pressure Research, 2005, 25, 97-105.	1.2	12
161	X-ray absorption spectroscopy on titanate perovskites at the Ti K edge. High Pressure Research, 2006, 26, 325-330.	1.2	12
162	Tetrahedral versus octahedral Mn site coordination in wurtzite and rocksalt Zn1â^'xMnxO investigated by means of XAS experiments under high pressure. Superlattices and Microstructures, 2007, 42, 251-254.	3.1	12

#	Article	IF	Citations
163	High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO. Physical Review B, 2011, 84, .	3.2	12
164	Dynamical origin of anomalous temperature hardening of elastic modulus in vitreous silica. Physical Review B, 2011, 84, .	3.2	12
165	Structural and optical studies of FeSb2 under high pressure. Physica B: Condensed Matter, 2012, 407, 4686-4694.	2.7	12
166	Epsilon iron as a spin-smectic state. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20280-20285.	7.1	12
167	On the Stiffness of Gold at the Nanoscale. ACS Nano, 2021, 15, 19128-19137.	14.6	12
168	Pressure-induced phase transition in icosahedral Al–Li–Cu quasicrystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 629-639.	0.6	11
169	Test of the equation of state of water up to freezing at 100 and 200 °C. Journal of Chemical Physics, 1996, 105, 8801-8803.	3.0	11
170	A study of KNbO3in the pressure range to 12 GPa using synchrotron radiation. Ferroelectrics, Letters Section, 1997, 22, 59-67.	1.0	11
171	EXAFS and Raman studies of mechanical alloyed Ni25Se75 mixture under high-pressure conditions. Journal of Solid State Chemistry, 2005, 178, 93-99.	2.9	11
172	Two timeâ€dependent, focusâ€dependent experiments using the energyâ€dispersive spectrometer at LURE. Review of Scientific Instruments, 1992, 63, 960-965.	1.3	10
173	Ultrasonic and Brillouin scattering measurements of the elastic constants of BaFCl. Journal of Physics Condensed Matter, 1993, 5, 2749-2758.	1.8	10
174	Ultrasonic and Brillouin scattering measurements of the elastic constants of SrFCl. Journal of Physics Condensed Matter, 1994, 6, 10407-10413.	1.8	10
175	Pressure-induced effects on the structural properties of iron selenides produced by mechano-synthesis. Journal of Physics Condensed Matter, 2004, 16, 8485-8490.	1.8	10
176	Combination of optical and X-ray techniques in the study of amorphous semiconductors under high pressure: an upgrade setup for combined XAS and XRD measurements. High Pressure Research, 2010, 30, 28-34.	1.2	10
177	Investigation of the phase diagram of selenium by means of Raman spectroscopy. High Pressure Research, 2013, 33, 35-39.	1.2	10
178	Time-resolved X-ray absorption spectroscopy using an energy dispersive optics: Strengths and limitations. Topics in Current Chemistry, 1989, , 179-203.	4.0	9
179	Coordination changes in crystalline and vitreous GeO2. High Pressure Research, 1990, 5, 717-719.	1.2	9
180	Pressure-induced coordination changes of germanium in crystalline and vitreous germanates. High Pressure Research, 1991, 7, 372-374.	1.2	9

#	Article	IF	CITATIONS
181	Contribution of XAFS to the Understanding of Material Behavior under High Pressure. Japanese Journal of Applied Physics, 1993, 32, 711.	1.5	9
182	Combined energy dispersive x-ray absorption and diffraction under high pressure. High Pressure Research, 1996, 14, 269-276.	1.2	9
183	Two recent developments in XMCD. Journal of Synchrotron Radiation, 1998, 5, 992-994.	2.4	9
184	High-pressure synchrotron radiation diffraction studies of icosahedral Ti-Zr-Ni and hydrogenated Ti-Zr-Ni quasicrystals. Journal of Physics Condensed Matter, 2001, 13, 8527-8536.	1.8	9
185	High-frequency dynamics of the glass former dibutylphthalate under pressure. Physical Review E, 2002, 66, 031510.	2.1	9
186	High-pressure behavior of the bond-bending mode of AIN. Journal of Experimental and Theoretical Physics, 2004, 98, 981-985.	0.9	9
187	X-ray absorption and EXAFS studies of Ge coordination and bonding in high-pressure nitrides: ?-Ge3N4 (phenacite) and ?-Ge3N4 (spinel). Physica Status Solidi A, 2004, 201, 909-916.	1.7	9
188	Pressure-induced transformations in amorphous Si-Ge alloy. Physical Review B, 2012, 85, .	3.2	9
189	Elasticity of SrTiO ₃ perovskite under high pressure. Geophysical Monograph Series, 0, , 125-130.	0.1	9
190	Brillouin scattering from D2O at pressures up to 34 GPa. Physical Review B, 1984, 29, 6362-6363.	3.2	8
191	Structural investigation of the zincblende- \hat{l}^2 tin transition for gasb by in situ X-ray absorption spectroscopy. High Pressure Research, 1992, 10, 416-419.	1.2	8
192	Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure. European Physical Journal Special Topics, 1994, 04, C9-151-C9-154.	0.2	8
193	Quasicrystals under high pressure. Physica B: Condensed Matter, 1995, 208-209, 495-496.	2.7	8
194	High-pressure X-ray diffraction study of UMn2Ge2. Physica B: Condensed Matter, 2004, 344, 255-259.	2.7	8
195	GaS and InSe equations of state from single crystal diffraction. Physica Status Solidi (B): Basic Research, 2007, 244, 169-173.	1.5	8
196	The low frequency dynamics of supercooled LiBr, 6H2O. Journal of Chemical Physics, 2011, 134, 034514.	3.0	8
197	Surface- and pressure-induced bulk Kondo breakdown in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SmB</mml:mi><mml:mn>6<td>l:m8.2<td>าl:masub></td></td></mml:mn></mml:msub></mml:math>	l:m 8. 2 <td>าl:masub></td>	าl:masub>
198	Brillouin scattering at high pressure or high temperature. Phase Transitions, 1997, 63, 187-200.	1.3	7

#	Article	IF	CITATIONS
199	Structure of Illa-Znln2S4 under High Pressure. Physica Status Solidi (B): Basic Research, 1999, 211, 385-387.	1.5	7
200	In situhigh pressure X-ray diffraction and EXAFS spectroscopy of icosahedral Al-Cu-Ru quasicrystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 2057-2071.	0.6	7
201	Ultrasonics and X-ray diffraction under pressure in the Paris–Edinburgh cell. Ultrasonics, 2000, 38, 247-251.	3.9	7
202	EXAFS study on liquid gallium under high pressure and high temperature. Journal of Synchrotron Radiation, 2001, 8, 776-778.	2.4	7
203	The phonon density of states in amorphous materials. Journal of Physics Condensed Matter, 2003, 15, S2335-S2341.	1.8	7
204	Combining high pressure and coherent diffraction: a first feasibility test. High Pressure Research, 2009, 29, 635-638.	1.2	7
205	Disorder-order phase transition at high pressure in ammonium fluoride. Physical Review B, 2017, 96, .	3.2	7
206	Pressure dependence of the acoustic shear mode in GaS by Brillouin scattering. Solid State Communications, 1985, 56, 311-313.	1.9	6
207	X-Ray Absorption Spectroscopy Investigation of Amorphous and Crystalline As ₂ S ₃ up to 30 GPa. Japanese Journal of Applied Physics, 1993, 32, 719.	1.5	6
208	Observation of the Cinnabar Phase in ZnSe at High Pressure. High Pressure Research, 2002, 22, 355-359.	1.2	6
209	New diamond anvil cell for optical and transport measurements under high magnetic fields up to 60ÂT. High Pressure Research, 2008, 28, 627-631.	1.2	6
210	Pressure-induced phonon freezing in the ZnSeS IIâ€"VI mixed crystal: phononâ€"polaritons and <i>ab initio </i> calculations. Journal of Physics Condensed Matter, 2016, 28, 205401.	1.8	6
211	In-situ high-pressure Raman scattering studies in PbWO4 up to 48ÂGPa. Journal of Alloys and Compounds, 2016, 667, 36-43.	5.5	6
212	Raman spectroscopic study of DL valine under pressure up to 20ÂGPa. Journal of Molecular Structure, 2016, 1109, 220-225.	3.6	6
213	High-pressure X-ray diffraction of icosahedral Al-Cu-Ru and Al-Pd-Re quasicrystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 115-128.	0.6	6
214	Raman scattering study of SbSBr at high pressure. Physical Review B, 1989, 39, 7585-7589.	3.2	5
215	X-Ray Absorption Spectroscopy under Extreme Conditions. European Physical Journal Special Topics, 1997, 7, C2-31-C2-38.	0.2	5
216	X-Ray Absorption Spectroscopy Applied to Pressure-Induced Transformations of Semiconductors. Physica Status Solidi (B): Basic Research, 1999, 211, 323-333.	1.5	5

#	Article	IF	Citations
217	High-pressure studies of mechanical alloyed NiSe powder mixture. Solid State Ionics, 2005, 176, 2639-2644.	2.7	5
218	Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy. AIP Conference Proceedings, 2007, , .	0.4	5
219	An EXAFS study of the structure of the Zn _{1-x} Be _x Se alloy system. Journal of Physics: Conference Series, 2009, 190, 012064.	0.4	5
220	Amorphous germanium under high-pressure conditions. High Pressure Research, 2009, 29, 103-107.	1.2	5
221	Multi-phonon (percolation) behavior and local clustering of Cd <i>x</i> Zn1â^' <i>x</i> Se-cubic mixed crystals (<i>x</i> â‰â€‰0.3): A Raman– <i>ab initio</i> study. Journal of Applied Physics, 2019, 126, .	2.5	5
222	Halogen molecular modifications at high pressure: the case of iodine. Physical Chemistry Chemical Physics, 2021, 23, 3321-3326.	2.8	5
223	Brillouin scattering studies of rare gas solids. High Pressure Research, 1992, 9, 205-217.	1.2	4
224	Determination of the structure of high pressure phases combining X-ray absorption and diffraction studies. Physica B: Condensed Matter, 1995, 208-209, 506-508.	2.7	4
225	Evidence for high-spin-to-low-spin transition under pressure in Fe ₇₂ Pt ₂₈ Invar alloy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 155-163.	0.6	4
226	Pressure Dependence of Wurtzite ZnO Structure. High Pressure Research, 2002, 22, 365-367.	1.2	4
227	STRUCTURAL CHARACTERIZATION OF THE CINNABAR PHASE IN ZnSexTe1-x ALLOYS. High Pressure Research, 2003, 23, 339-342.	1.2	4
228	Combined X-ray absorption and X-ray diffraction under high pressure. High Pressure Research, 2016, 36, 479-492.	1.2	4
229	Crystal structure and magnetism of MnO under pressure. Physical Review B, 2020, 101, .	3.2	4
230	Recent progress in high pressure X-ray absorption spectroscopy studies at the ODE beamline. High Pressure Research, 2020, 40, 82-87.	1.2	4
231	Elastic Properties of Rare Gas-Solid. NATO ASI Series Series B: Physics, 1991, , 181-193.	0.2	4
232	Optical properties of A2CuCl4 layer perovskites under pressure. Structural correlations. , 2001, , 143-153.		4
233	Elastic moduli of TiO2 up to 13 GPa. Journal De Physique (Paris), Lettres, 1984, 45, 1131-1136.	2.8	3
234	Single crystal EXAFS at high pressure. High Pressure Research, 2000, 19, 335-340.	1.2	3

#	Article	IF	Citations
235	Magnetic and crystallographic characterization of $Pt \leq 3 < b \leq 3 < b \leq 5 $ And the proof of Physics Condensed Matter, 2009, 21, 346003.	1.8	3
236	High pressure Raman scattering of DL‑isoleucine crystals and DFT calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 207-215.	3.9	3
237	Phonon-based partition of (ZnSe-like) semiconductor mixed crystals on approach to their pressure-induced structural transition. Scientific Reports, 2020, 10, 19803.	3.3	3
238	Pressure-induced phase transitions in DL-glutamic acid monohydrate crystal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118059.	3.9	3
239	XAS Study of the High Pressure Behaviour of Quartz-Like Compounds. European Physical Journal Special Topics, 1997, 7, C2-987-C2-989.	0.2	3
240	Pressure Induced Phase Transition Followed by XAFS and Multiple Scattering Calculations. Japanese Journal of Applied Physics, 1993, 32, 44.	1.5	3
241	BAND GAP VARIATION OF GALLIUM SELENIDE UNDER HIGH PRESSURE. Journal De Physique Colloque, 1984, 45, C8-65-C8-69.	0.2	2
242	Brillouin scattering from argon at high pressure. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 139-140, 187-188.	0.9	2
243	Evolution under Pressure of the Local Structure around Zinc and Mercury Atoms in ZnxHg1-xTe Solid Solutions. Japanese Journal of Applied Physics, 1993, 32, 716.	1.5	2
244	Icosahedral and Approximant Structures of AlCuFe Phases: A Study by Diffraction at High Pressure. Materials Science Forum, 1994, 166-169, 449-454.	0.3	2
245	Coexistence of Shallow and Localized Donor Centers in Bulk GaN Crystals Studied by High-Pressure Raman Spectroscopy. Materials Research Society Symposia Proceedings, 1996, 449, 689.	0.1	2
246	Pressure induced amorphisation and the amorphous-amorphous transition in nano-TiO[sub 2]: An X-ray Absorption Spectroscopy study , 2009, , .		2
247	A thermodynamically consistent phase diagram of a trimorphic pharmaceutical, <scp>l</scp> -tyrosine ethyl ester, based on limited experimental data. Physical Chemistry Chemical Physics, 2018, 20, 24074-24087.	2.8	2
248	Defect-induced ultimately fast volume phonon-polaritons in the wurtzite Zn0.74Mg0.26Se mixed crystal. Scientific Reports, 2019, 9, 7817.	3.3	2
249	XAS studies of pressure-induced structural and electronic transformations in $\langle i \rangle \hat{l} \pm \langle i \rangle$ -FeOOH. Journal of Physics Condensed Matter, 2019, 31, 325401.	1.8	2
250	Boron and Boron-Rich Solids at High Pressures. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 241-249.	0.3	2
251	EXAFS Evidence of a Phase Transition in Icosahedral AlLiCu Quasicrystals under High Pressure. European Physical Journal Special Topics, 1997, 7, C2-991-C2-992.	0.2	2
252	Exceptional phonon point versus free phonon coupling in Zn1â^'xBexTe under pressure: an experimental and ab initio Raman study. Scientific Reports, 2022, 12, 753.	3.3	2

#	Article	IF	Citations
253	Pressure induced phases transitions in GaP: An x ray absorption spectroscopy investigation. Physica B: Condensed Matter, 1989, 158, 604-605.	2.7	1
254	Experimental determination of the dynamical properties of molecular crystals under pressure. High Pressure Research, 1990, 3, 208-214.	1.2	1
255	Pressure effect on a layer compound: GaSe. High Pressure Research, 1990, 3, 75-77.	1.2	1
256	High pressure phase transition in GaAs. High Pressure Research, 1992, 9, 144-147.	1.2	1
257	Structural Studies of Semiconductor-to-Metal Transition in the Bulk Amorphous Solid Solutions (GaSb) _{1-x} (Ge ₂) _x under High Pressure. Materials Science Forum, 1996, 228-231, 543-550.	0.3	1
258	Ultrasonic and Brillouin scattering measurements under pressure near the structural phase transition of strontium titanate. , 0, , .		1
259	High-Pressure Ultrasonic Measurements on Single Crystal. High Pressure Research, 2002, 22, 763-767.	1.2	1
260	Publisher's Note: Polyamorphic transition of germanium under pressure [Phys. Rev. B69, 201201 (2004)]. Physical Review B, 2004, 69, .	3.2	1
261	Structural and mechanical stability of La ₃ Ga _{5.5} Ta _{O₁₄single crystal under hydrostatic pressure. European Physical Journal Special Topics, 2005, 126, 43-46.}	0.2	1
262	The pressure-induced phase transition of mechanically alloyed nanocrystalline GaSb. Journal of Physics Condensed Matter, 2008, 20, 275212.	1.8	1
263	The Phonon Percolation Scheme for Alloys: Extension to the Entire Lattice Dynamics and Pressure Dependence. Japanese Journal of Applied Physics, 2011, 50, 05FE02.	1.5	1
264	Mechanism of pressure induced amorphization of SnI4: A combined x-ray diffractionâ€"x-ray absorption spectroscopy study. Journal of Chemical Physics, 2020, 153, 064501.	3.0	1
265	High-Pressure X-Ray Absorption Spectroscopy: Application to the Local Aspects of Phase Transitions in Ferroelectric Perovskites. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 51-67.	0.3	1
266	ptFe ₃ Invar Studied by High Pressure Magnetic Circular Dichroism. European Physical Journal Special Topics, 1997, 7, C2-441-C2-442.	0.2	1
267	In situ high pressure X-ray diffraction and EXAFS spectroscopy of icosahedral Al-Cu-Ru quasicrystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 2057-2071.	0.6	1
268	Physical properties of GaN and AlN under pressures up to 0.5 Mbar., 1993,, 426-427.		1
269	Full Multiple Scattering Calculations on HgTe Under High Pressure at the Mercury L3 X-Ray Absorption Edge., 1997,, 447-450.		1
270	Elastic properties of SrTiO/sub 3/ under extreme conditions: a new high pressure ultrasonic measurement set-up., 1999,,.		1

#	Article	IF	Citations
271	Study of a structural phase transition in SrTio3under high pressure by x-ray absorption spectroscopy. High Pressure Research, 1991, 7, 108-110.	1.2	0
272	Pressure induced variation of the intramolecular distance in Gex4(X=Cl, Br, I) compounds. High Pressure Research, 1991, 7, 281-283.	1.2	0
273	High Pressure Studies of Quasicrystals. Materials Research Society Symposia Proceedings, 2000, 643, 551.	0.1	0
274	Phonon signature of the highâ€pressure rocksalt phase of InN. Physica Status Solidi (B): Basic Research, 2015, 252, 2104-2110.	1.5	0
275	Poroelastic Theory Applied to the Adsorption-Induced Deformation of Amorphous Silica., 2017,,.		0
276	The Phonon Percolation Scheme for Alloys: Extension to the Entire Lattice Dynamics and Pressure Dependence. Japanese Journal of Applied Physics, 2011, 50, 05FE02.	1.5	0
277	Mesures sous hautes pressions et rayonnement synchrotron. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1989, 86, 1823-1832.	0.2	0
278	Brillouin scattering in aluminosilicate glasses and melts up to 2550ÂK. Temperature and composition effects. Journal of Non-Crystalline Solids: X, 2022, 14, 100086.	1.2	0
279	VARIATION OF THE OPTICAL ABSORPTION EDGE OF CsI AT HIGH PRESSURE. Journal De Physique Colloque, 1984, 45, C8-47-C8-51.	0.2	0
280	INELASTIC NEUTRON SCATTERING AND LATTICE DYNAMICS OF THE LAYER SEMICONDUCTOR GaS. Journal De Physique Colloque, 1981, 42, C6-295-C6-297.	0.2	0