
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/82624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress on donor and donor–donor carbenes. Chemical Society Reviews, 2020, 49, 908-950.	38.1	263
2	Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. CheM, 2018, 4, 1208-1262.	11.7	197
3	A General and Efficient Cobalt(II)-Based Catalytic System for Highly Stereoselective Cyclopropanation of Alkenes with α-Cyanodiazoacetates. Journal of the American Chemical Society, 2010, 132, 12796-12799.	13.7	192
4	Cobalt-Catalyzed Asymmetric Cyclopropanation with Diazosulfones: Rigidification and Polarization of Ligand Chiral Environment via Hydrogen Bonding and Cyclization. Journal of the American Chemical Society, 2008, 130, 5042-5043.	13.7	177
5	Acceptor/Acceptorâ€Substituted Diazo Reagents for Carbene Transfers: Cobalt atalyzed Asymmetric <i>Zâ€</i> Cyclopropanation of Alkenes with αâ€Nitrodiazoacetates. Angewandte Chemie - International Edition, 2008, 47, 8460-8463.	13.8	170
6	Enantioselective Cyclopropenation of Alkynes with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. Journal of the American Chemical Society, 2011, 133, 3304-3307.	13.7	142
7	Highly asymmetric cobalt-catalyzed aziridination of alkenes with trichloroethoxysulfonyl azide (TcesN3). Chemical Communications, 2009, , 4266.	4.1	135
8	Enantioselective Intramolecular Câ^'H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie - International Edition, 2016, 55, 8452-8456.	13.8	130
9	NHC–AuCl/Selectfluor: A Highly Efficient Catalytic System for Carbene-Transfer Reactions. Organic Letters, 2014, 16, 4472-4475.	4.6	102
10	Cobalt(II) atalyzed Asymmetric Olefin Cyclopropanation with αâ€Ketodiazoacetates. Angewandte Chemie - International Edition, 2013, 52, 11857-11861.	13.8	95
11	Silver-Catalyzed Difunctionalization of Terminal Alkynes: Highly Regio- and Stereoselective Synthesis of (Z)-β-Haloenol Acetates. Organic Letters, 2010, 12, 3262-3265.	4.6	89
12	Highly Chemo―and Stereoselective Catalyst ontrolled Allylic Câ^'H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2018, 57, 12405-12409.	13.8	83
13	Dual Catalysis: Proton/Metal-Catalyzed Tandem Benzofuran Annulation/Carbene Transfer Reaction. Organic Letters, 2016, 18, 1322-1325.	4.6	82
14	Enynal/Enynone: A Safe and Practical Carbenoid Precursor. Current Organic Chemistry, 2015, 20, 102-118.	1.6	71
15	Silver-Catalyzed Reaction of Enynals with Alkenes: A Tandem 1,3-Dipolar Cycloaddition/Cyclopropanation. Organic Letters, 2014, 16, 4412-4415.	4.6	69
16	Sedimentary characteristics and seismic geomorphologic responses of a shallow-water delta in the Qingshankou Formation from the Songliao Basin, China. Marine and Petroleum Geology, 2017, 79, 131-148.	3.3	69
17	Silverâ€Catalyzed Oneâ€Pot Cyclization Reaction of Electron―Deficient Alkynes and 2â€Ynâ€1â€ols: An Efficien Domino Process to Polysubstituted Furans. Advanced Synthesis and Catalysis, 2010, 352, 143-152.	t 4.3	68
18	Bioinspired Intramolecular Diels–Alder Reaction: A Rapid Access to the Highlyâ€ S trained Cyclopropaneâ€Fused Polycyclic Skeleton. Chemistry - A European Journal, 2014, 20, 2425-2430.	3.3	68

#	Article	IF	CITATIONS
19	Mechanistic Insight into Transition Metal-Catalyzed Reaction of Enynal/Enynone with Alkenes: Metal-Dependent Reaction Pathway. Journal of Organic Chemistry, 2014, 79, 6113-6122.	3.2	67
20	Iron-catalyzed Benzannulation Reactions of 2-Alkylbenzaldehydes and Alkynes Leading to Naphthalene Derivatives. Organic Letters, 2013, 15, 898-901.	4.6	64
21	Goldâ€Catalyzed Reactions of Enynals/Enynones with Norbornenes: Generation and Trapping of Cyclic <i>o</i> â€Quinodimethanes (<i>o</i> â€QDMs). Chemistry - A European Journal, 2013, 19, 4695-4700.	3.3	61
22	A Route to Polysubstituted Aziridines from Carbenes and Imines through a Nondiazo Approach. Organic Letters, 2016, 18, 5208-5211.	4.6	57
23	A direct and practical approach for the synthesis of N-heterocyclic carbene coinage metal complexes. Tetrahedron, 2012, 68, 7949-7955.	1.9	55
24	An Efficient Route to Polysubstituted Tetrahydronaphthols: Silverâ€Catalyzed [4+2] Cyclization of 2â€Alkylbenzaldehydes and Alkenes. Angewandte Chemie - International Edition, 2012, 51, 10861-10865.	13.8	51
25	Transition-Metal-Catalyzed Formation of trans Alkenes via Coupling of Aldehydes. Organic Letters, 2004, 6, 377-380.	4.6	48
26	Donor- and acceptor-enynals/enynones. Organic and Biomolecular Chemistry, 2018, 16, 8884-8898.	2.8	47
27	Synergistic Catalysis: Metal/Protonâ€Catalyzed Cyclization of Alkynones Toward Bicyclo[3. <i>n</i> .1]alkanones. Angewandte Chemie - International Edition, 2015, 54, 9414-9418.	13.8	46
28	Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar basin, Western China. Journal of Petroleum Science and Engineering, 2017, 149, 591-602.	4.2	43
29	Occurrence and origin of pore-lining chlorite and its effectiveness on preserving porosity in sandstone of the middle Yanchang Formation in the southwest Ordos Basin. Applied Clay Science, 2017, 148, 25-38.	5.2	42
30	Strong phenyl–perfluorophenyl π–π stacking and C–Hâ‹⊤F–C hydrogen bonding interactions in the crystals of the corresponding aromatic aldimines. Tetrahedron Letters, 2005, 46, 2713-2716.	1.4	41
31	Gold-catalyzed tandem Diels–Alder reactions of enynals/enynones with alkenes: generation and trapping of cyclic o-QDMs. Organic and Biomolecular Chemistry, 2014, 12, 4104-4111.	2.8	39
32	Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin, NW China. Petroleum Exploration and Development, 2015, 42, 633-645.	7.0	37
33	Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin, China. Science China Earth Sciences, 2012, 55, 386-396.	5.2	35
34	Rapid Access to 2â€Methylene Tetrahydrofurans and Î³â€Łactones: A Tandem Fourâ€&tep Process. Angewandte Chemie - International Edition, 2016, 55, 2587-2591.	13.8	35
35	Enantioselective Rh(II)-Catalyzed Desymmetric Cycloisomerization of Diynes: Constructing Furan-Fused Dihydropiperidines with an Alkyne-Substituted Aza-Quaternary Stereocenter. Journal of the American Chemical Society, 2021, 143, 14916-14925.	13.7	35
36	Styrene as 4ï€-Component in Zn(II)-Catalyzed Intermolecular Diels–Alder/Ene Tandem Reaction. Organic Letters, 2016, 18, 3554-3557.	4.6	34

#	Article	IF	CITATIONS
37	An efficient route to highly strained cyclobutenes: indium-catalyzed reactions of enynals with alkynes. Chemical Communications, 2015, 51, 5530-5533.	4.1	33
38	Rh2(OAc)4 catalyzed formation of fluorine-containing polysubstituted furans from diazocompounds and aromatic alkynes. Tetrahedron, 2010, 66, 1261-1266.	1.9	32
39	Highly regio- and stereoselective synthesis of 1,3-enynes from unactivated ethylenes via palladium-catalyzed cross-coupling. Tetrahedron Letters, 2011, 52, 5736-5739.	1.4	30
40	A direct and practical approach for the synthesis of Au(I)-NHC complexes from commercially available imidazolium salts and Au(III) salts. Tetrahedron Letters, 2012, 53, 815-818.	1.4	30
41	Metal-catalyzed formation of 1,3-cyclohexadienes: a catalyst-dependent reaction. Organic and Biomolecular Chemistry, 2015, 13, 1225-1233.	2.8	30
42	Gold-catalyzed ring-expansion through acyl migration to afford furan-fused polycyclic compounds. Chemical Communications, 2017, 53, 2677-2680.	4.1	30
43	Enantioselective Intramolecular Câ^'H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie, 2016, 128, 8592-8596.	2.0	29
44	Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie - International Edition, 2020, 59, 4670-4677.	13.8	29
45	Zincâ€Catalyzed Tandem Diels–Alder Reactions of Enynals with Alkenes: Generation and Trapping of Cyclic <i>o</i> â€Quinodimethanes (<i>o</i> â€QDMs). Advanced Synthesis and Catalysis, 2016, 358, 2684-2691.	4.3	28
46	Rh ₂ (<scp>ii</scp>)-catalyzed enantioselective intramolecular Büchner reaction and aromatic substitution of donor–donor carbenes. Chemical Science, 2022, 13, 1992-2000.	7.4	28
47	One-Pot Synthesis of Indole Derivatives from the Reaction of Nitroalkynes and Alkynes via a Mercury-Carbene Intermediate. Synthesis, 2017, 49, 4173-4182.	2.3	27
48	CuCl/Et ₃ N-Catalyzed Synthesis of Indanone-Fused 2-Methylene Pyrrolidines from Enynals and Propargylamines. Organic Letters, 2017, 19, 4540-4543.	4.6	27
49	Dirhodium(<scp>ii</scp>)-catalysed cycloisomerization of azaenyne: rapid assembly of centrally and axially chiral isoindazole frameworks. Chemical Science, 2021, 12, 13730-13736.	7.4	27
50	Cascade Oneâ€Pot Synthesis of Indanoneâ€Fused Cyclopentanes from the Reaction of Donorâ€Acceptor Cyclopropanes and Enynals <i>via</i> a Sequential Hydrolysis/Knoevenagel Condensation/[3+2] Cycloaddition. Advanced Synthesis and Catalysis, 2017, 359, 2924-2930.	4.3	26
51	Stereoselective preparation of trifluoromethyl containing 1,4-oxathiolane derivatives through ring expansion reaction of 1,3-oxathiolanes. Tetrahedron, 2006, 62, 829-832.	1.9	25
52	Cascade Claisen Rearrangement: Rapid Synthesis of Polysubstituted Salicylaldehydes and Total Syntheses of Hemigossypol and Gossypol. Angewandte Chemie - International Edition, 2018, 57, 8702-8707.	13.8	25
53	Ligand Effect on Cobalt(II) atalyzed Asymmetric Cyclopropanation with Diazosulfones – Approaching High Stereoselectivity through Modular Design of D 2 â€Symmetric Chiral Porphyrins. European Journal of Inorganic Chemistry, 2012, 2012, 430-434.	2.0	24
54	Origin of dolomitic rocks in the lower Permian Fengcheng formation, Junggar Basin, China: evidence from petrology and geochemistry. Mineralogy and Petrology, 2017, 111, 267-282.	1.1	21

#	Article	IF	CITATIONS
55	Catalytic [1,3]â€Oâ€ŧo Rearrangement: Rapid Access to Bridged Bicyclic Systems. Chemistry - A European Journal, 2018, 24, 6927-6931.	3.3	21
56	Highly Chemo―and Stereoselective Catalystâ€Controlled Allylic Câ^'H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angewandte Chemie, 2018, 130, 12585-12589.	2.0	21
57	Synthesis and hetero-Diels–Alder reactions of (E)-α-perfluoroalkanesulfonyl-α,β-unsaturated ketones. Tetrahedron Letters, 2006, 47, 4951-4955.	1.4	20
58	N-Heterocyclic carbene–gold(I)-catalyzed carboheterofunctionalization of alkenes with arylboronic acids. Tetrahedron, 2013, 69, 10375-10383.	1.9	20
59	NHC–AuCl/Selectfluor: An Efficient Catalytic System for π-Bond Activation. Synlett, 2017, 28, 640-653.	1.8	20
60	Gold-Catalyzed Ring Expansion of Enyne-Lactone: Generation and Transformation of 2-Oxoninonium. Organic Letters, 2017, 19, 5856-5859.	4.6	20
61	Transition metal-catalyzed formation of CF3-substituted α,β-unsaturated alkene and the synthesis of α-trifluoromethyl substituted β-amino ester. Tetrahedron, 2006, 62, 11760-11765.	1.9	19
62	Induced Folding by Chiral Nonplanar Aromatics. Journal of Organic Chemistry, 2009, 74, 7023-7033.	3.2	19
63	Synergy of activating substrate and introducing C-H···O interaction to achieve Rh2(II)-catalyzed asymmetric cycloisomerization of 1,n-enynes. Science China Chemistry, 2020, 63, 1230-1239.	8.2	19
64	A practical system to synthesize the multiple-substituted 2,5-dihydrofuran by the intermolecular dipolar cycloaddition reactions involving acceptor/acceptor-substituted diazo reagents. Tetrahedron, 2011, 67, 5507-5515.	1.9	18
65	Synthesis of stable arsonium and sulfur ylides from perfluoroalkanesulfonyl diazocarbonyl compounds and their X-ray diffraction analysis. Journal of Fluorine Chemistry, 2008, 129, 343-348.	1.7	17
66	Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces. Bioorganic and Medicinal Chemistry, 2013, 21, 2210-2216.	3.0	17
67	Dolomitization of felsic volcaniclastic rocks in continental strata: A study from the Lower Cretaceous of the A'nan Sag in Er'lian Basin, China. Sedimentary Geology, 2017, 353, 13-27.	2.1	17
68	Selectivity-switchable construction of benzo-fused polycyclic compounds through a gold-catalyzed reaction of enyne-lactone. Chemical Communications, 2018, 54, 1893-1896.	4.1	17
69	Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nature Communications, 2022, 13, 1858.	12.8	17
70	Rh(II)-catalyzed formation and rearrangement of trifluoroacetyl-containing sulfur ylides. Tetrahedron, 2007, 63, 4543-4547.	1.9	16
71	Genesis and hydrocarbon significance of vesicular welded tuffs: A case study from the Fengcheng Formation, Wu-Xia area, Junggar Basin, NW China. Petroleum Exploration and Development, 2012, 39, 173-183.	7.0	16
72	Development of sedimentary geology of petroliferous basins in China. Petroleum Exploration and Development, 2016, 43, 890-901.	7.0	16

#	Article	IF	CITATIONS
73	Iron/zinc-catalyzed benzannulation reactions of 2-(2-oxo-alkyl)benzketones leading to naphthalene and isoquinoline derivatives. Organic Chemistry Frontiers, 2018, 5, 1028-1033.	4.5	16
74	Enynone-enabled migratory insertion and Schmittel cyclization cascade for the synthesis of furan-fused fluorenes. Organic Chemistry Frontiers, 2019, 6, 1118-1122.	4.5	16
75	Bottom-up modular synthesis of well-defined oligo(arylfuran)s. Nature Communications, 2021, 12, 6165.	12.8	16
76	The occurrence and transformation of lacustrine sediment gravity flow related to depositional variation and paleoclimate in the Lower Cretaceous Prosopis Formation of the Bongor Basin, Chad. Journal of African Earth Sciences, 2017, 134, 134-148.	2.0	15
77	A silver-catalyzed three-component reaction <i>via</i> stabilized cation: synthesis of polysubstituted tetrahydronaphthylamines. Organic Chemistry Frontiers, 2018, 5, 1160-1164.	4.5	15
78	Rh2(OAc)4-catalyzed formation of trans-alkenes from the reaction of aldehydes with perfluorophenyl diazomethane through tellurium ylide. Tetrahedron Letters, 2006, 47, 5897-5900.	1.4	14
79	Rapid Access to 2â€Methylene Tetrahydrofurans and Î³â€Łactones: A Tandem Fourâ€Step Process. Angewandte Chemie, 2016, 128, 2633-2637.	2.0	14
80	Ir-Catalyzed reactions in natural product synthesis. Organic Chemistry Frontiers, 2018, 5, 132-150.	4.5	14
81	Regioselectivityâ€6witchable Intramolecular Hydroarylation of Ynone. Advanced Synthesis and Catalysis, 2020, 362, 5632-5638.	4.3	14
82	Modular Approach for Synthesis of Vicinal Diamines Containing Axial Chiral 1,1′-Binaphthyl from 1,2-Diaminoethane by Pd-Catalyzed N-Arylation Reactions. Organic Letters, 2011, 13, 1146-1149.	4.6	13
83	Selectivity-switchable oxidation of tetraarylethylenes to fused polycyclic compounds. Chemical Communications, 2016, 52, 13345-13348.	4.1	13
84	Rapid Access to Oxaâ€Bridged Bicyclic Skeletons through Gold atalyzed Tandem Rearrangement Reaction. Chemistry - A European Journal, 2019, 25, 9405-9409.	3.3	13
85	A Strategy To Obtain o-Naphthoquinone Methides: Ag(I)-Catalyzed Cyclization of Enynones for the Synthesis of Benzo[h]chromanes and Naphthopyryliums. Organic Letters, 2019, 21, 1488-1492.	4.6	13
86	Mechanism-Guided Scaffold Diversification: Perturbing and Trapping the Intermediates of Maltol-Type Cascade Claisen Rearrangement. Organic Letters, 2019, 21, 90-94.	4.6	12
87	Hydrogen radical-shuttle (HRS)-enabled photoredox synthesis of indanones via decarboxylative annulation. Nature Communications, 2021, 12, 5257.	12.8	12
88	Cu-catalyzed carboboration of acetylene with Michael acceptors. Chemical Science, 2022, 13, 7604-7609.	7.4	12
89	A facile synthesis of 4-gem-difluoromethylene β-lactam and its derivatives from BrCF2CF2Br. Journal of Fluorine Chemistry, 2006, 127, 1195-1203.	1.7	11
90	The First Example of Catalytic Aziridination Mediated by Arsonium Ylides: Preparation oftrans-Pentafluorophenyl-Containing Aziridines. Synlett, 2005, 2005, 1429-1432.	1.8	10

#	Article	IF	CITATIONS
91	Utilizing the high dielectric constant of water: efficient synthesis of amino acid-derivatized cyclobutenones. Tetrahedron Letters, 2008, 49, 2128-2131.	1.4	10
92	Efficient Assembly of Tetracyclic Framework of Fluorenols through Silverâ€Catalyzed Tandem Reaction of Acceptorâ€Enynals and Alkynes via Unfavorable 6â€ <i>endo</i> â€ <i>dig</i> Cyclization. Asian Journal of Organic Chemistry, 2018, 7, 545-549.	2.7	10
93	Construction of polycyclic bridged indene derivatives by a tandem 1,3-rearrangement/intramolecular Friedel–Crafts cyclization of propargyl acetates. Chemical Communications, 2019, 55, 7382-7385.	4.1	10
94	Controls on carbonate cementation in early syn-rift terrestrial siliciclastics: The Lower Cretaceous of the Bayindulan Sag in Er'lian Basin, China. Marine and Petroleum Geology, 2019, 105, 64-80.	3.3	10
95	Domino Reaction between Nitrosoarenes and Ynenones for Catalyst-Free Preparation of Indanone-Fused Tetrahydroisoxazoles. Organic Letters, 2019, 21, 2126-2129.	4.6	10
96	Rapid Access to Oxabicyclo[2.2.2]octane Skeleton through Cu(l)â€Catalyzed Generation and Trapping of Vinyl―o â€quinodimethanes (Vinyl―o â€QDMs) â€. Chinese Journal of Chemistry, 2020, 38, 1052-1056.	4.9	10
97	An efficient approach to generate aryl carbenes: gold-catalyzed sequential activation of 1,6-diynes. Organic Chemistry Frontiers, 2017, 4, 450-454.	4.5	9
98	Multiple Dolomitization and Fluid Flow Events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China. Acta Geologica Sinica, 2018, 92, 311-332.	1.4	9
99	Gold-catalyzed generation of azafulvenium from an enyne sulfonamide: rapid access to fully substituted pyrroles. Organic Chemistry Frontiers, 2019, 6, 480-485.	4.5	9
100	Catalytic regio- and stereoselective intermolecular [5+2] cycloaddition <i>via</i> conjugative activation of oxidopyrylium. Chemical Communications, 2020, 56, 9533-9536.	4.1	9
101	Formal Allylation and Enantioselective Cyclopropanation of Donor/Acceptor Rhodium(II) Azavinyl Carbenes. Organic Letters, 2021, 23, 1275-1279.	4.6	9
102	Application ofo-Quinodimethanes in Organic Synthesis. Chinese Journal of Organic Chemistry, 2014, 34, 1322.	1.3	9
103	An efficient method to synthesize N/O, O-difluoroboron complexes from alkynes. Green Synthesis and Catalysis, 2022, 3, 89-94.	6.8	9
104	Rhodium(II)-catalyzed addition of 2-diazo(fluoroalkyl)acetoacetates to sulfides: a simple synthesis of stable sulfonium ylides. Journal of Fluorine Chemistry, 2004, 125, 1071-1076.	1.7	8
105	Cu(<scp>i</scp>)-Catalyzed stereoselective synthesis of trisubstituted <i>Z</i> -enol esters <i>via</i> interrupting the 1,3- <i>O</i> -transposition reaction. Organic Chemistry Frontiers, 2018, 5, 2510-2514.	4.5	8
106	1,4-Addition of <i>o</i> -naphthoquinone methides induced by silver-catalyzed cyclization of enynones: an approach to unsymmetrical triarylmethanes and benzo[<i>f</i>]chromenes. Organic Chemistry Frontiers, 2020, 7, 3387-3392.	4.5	8
107	<scp>TEMPOâ€Regulated</scp> Regio―and Stereoselective <scp>Crossâ€Dihalogenation</scp> with Dual Electrophilic X ⁺ Reagents. Chinese Journal of Chemistry, 2021, 39, 3004-3010.	4.9	8
108	Palladium-Catalyzed Oxidation and Cyclization of Carbon-Carbon Triple Bonds in Fluorous Media Using Molecular Oxygen. Synlett, 2011, 2011, 1023-1027.	1.8	6

#	Article	IF	CITATIONS
109	Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie, 2020, 132, 4700-4707.	2.0	6
110	Migratory insertion of copper-allenylidene from propargyl ester. Chemical Communications, 2022, 58, 4969-4972.	4.1	6
111	A novel synthesis of 5-perfluorophenyl 4,5-dihydro-1H-pyrazoles in THF or water. Journal of Fluorine Chemistry, 2007, 128, 1379-1384.	1.7	5
112	Modular Approach to the Synthesis of Polydentate NHC-Ligand Precursors (Benzimidazolium Salts) Containing Axial Chiral 1,1′-Binaphthyl via Pd-Catalyzed N-Arylation of 1,2-Diaminobenzene. Synthesis, 2014, 46, 212-224.	2.3	5
113	Divergent Synthesis of Ketone-Fused Indoles/Pyrroles via Metal-Guided Friedel-Crafts Cyclization. Chinese Journal of Organic Chemistry, 2021, 41, 3521.	1.3	5
114	Reservoir differences and formation mechanisms in the Ke-Bai overthrust belt, northwestern margin of the Junggar Basin, China. Petroleum Science, 2010, 7, 40-48.	4.9	4
115	Cycloaddition Reaction of Vinylphenylfurans and Dimethyl Acetylenedicarboxylate to [8 + 2] Isomers via Tandem [4 + 2]/Diradical Alkene–Alkene Coupling/[1,3]-H Shift Reactions: Experimental Exploration and DFT Understanding of Reaction Mechanisms. Journal of Organic Chemistry, 2016, 81, 8155-8168.	3.2	4
116	Copper-Catalyzed Asymmetric Synthesis of Bicyclo[3. <i>n</i> .1]alkenones. Journal of Organic Chemistry, 2021, 86, 5388-5400.	3.2	4
117	Cascade Claisen Rearrangement: Rapid Synthesis of Polysubstituted Salicylaldehydes and Total Syntheses of Hemigossypol and Gossypol. Angewandte Chemie, 2018, 130, 8838-8843.	2.0	3
118	Catalyst-free synthesis of isoxazolidine from nitrosoarene and haloalkyne via a 1,2-halo-migration/[3 + 2] cycloaddition cascade. Organic and Biomolecular Chemistry, 2021, 19, 3139-3143.	2.8	3
119	Construction of Partially Protected Nonsymmetrical Biaryldiols via Semipinacol Rearrangement of <i>o</i> -NQM Derived from Enynones. Organic Letters, 2021, 23, 71-75.	4.6	2
120	Benzene-Free Synthesis of Multisubstituted Catechol via Oxidative Dearomatic Reorganization. Organic Letters, 2021, 23, 1411-1415.	4.6	2
121	DABCO-Induced [2+2+2]-Cycloaddition Reaction of Ethyl Propiolate and Aryl Aldehydes for the Synthesis of 4-Aryl-4H-pyrans. Synlett, 2009, 2009, 3295-3298.	1.8	1
122	Identification Marks of Cretaceous Shallowâ€Water Delta in the Songliao Basin, China. Acta Geologica Sinica, 2016, 90, 2289-2290.	1.4	1
123	Frontispiece: Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
124	Frontispiz: Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie, 2020, 132, .	2.0	0