Gerald M Mcinerney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8262046/publications.pdf

Version: 2024-02-01

70 papers 12,241 citations

147801 31 h-index 71 g-index

91 all docs 91 docs citations

91 times ranked 26315 citing authors

#	Article	IF	CITATIONS
1	A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nature Communications, 2022, 13, 155.	12.8	49
2	Probabilistic classification of antiâ€SARSâ€CoVâ€2 antibody responses improves seroprevalence estimates. Clinical and Translational Immunology, 2022, 11, e1379.	3.8	4
3	Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. Science Advances, 2022, 8, eabm0220.	10.3	18
4	Nanobodies in the limelight: Multifunctional tools in the fight against viruses. Journal of General Virology, 2022, 103, .	2.9	1
5	Systematic evaluation of SARSâ€CoVâ€2 antigens enables a highly specific and sensitive multiplex serological COVIDâ€19 assay. Clinical and Translational Immunology, 2021, 10, e1312.	3.8	24
6	DNA-launched RNA replicon vaccines induce potent anti-SARS-CoV-2 immune responses in mice. Scientific Reports, 2021, 11, 3125.	3.3	17
7	SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Reports Medicine, 2021, 2, 100252.	6.5	33
8	Seropositivity in blood donors and pregnant women during the first year of SARSâ€CoVâ€2 transmission in Stockholm, Sweden. Journal of Internal Medicine, 2021, 290, 666-676.	6.0	34
9	Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials, 2021, 11, 1312.	4.1	99
10	Multianalyte serology in home-sampled blood enables an unbiased assessment of the immune response against SARS-CoV-2. Nature Communications, 2021, 12, 3695.	12.8	32
11	Arabidopsis thaliana G3BP Ortholog Rescues Mammalian Stress Granule Phenotype across Kingdoms. International Journal of Molecular Sciences, 2021, 22, 6287.	4.1	6
12	Adjuvanted SARS-CoV-2 spike protein elicits neutralizing antibodies and CD4 T cell responses after a single immunization in mice. EBioMedicine, 2021, 63, 103197.	6.1	31
13	Alphavirus RNA replication in vertebrate cells. Advances in Virus Research, 2021, 111, 111-156.	2.1	22
14	Beta RBD boost broadens antibody-mediated protection against SARS-CoV-2 variants in animal models. Cell Reports Medicine, 2021, 2, 100450.	6.5	17
15	Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nature Communications, 2021, 12, 6761.	12.8	47
16	SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nature Communications, 2020, 11, 5064.	12.8	243
17	Replication of Salmonella enterica serovar Typhimurium in RAW264.7 Phagocytes Correlates With Hypoxia and Lack of iNOS Expression. Frontiers in Cellular and Infection Microbiology, 2020, 10, 537782.	3.9	11
18	An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nature Communications, 2020, 11, 4420.	12.8	261

#	Article	IF	CITATIONS
19	Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs. Biomolecules, 2020, 10, 1661.	4.0	27
20	Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nature Communications, 2020, 11, 5588.	12.8	132
21	Sensitivity of Alphaviruses to G3BP Deletion Correlates with Efficiency of Replicase Polyprotein Processing. Journal of Virology, 2020, 94, .	3.4	20
22	Activation of the PI3K-AKT Pathway by Old World Alphaviruses. Cells, 2020, 9, 970.	4.1	22
23	Separate domains of G3BP promote efficient clustering of alphavirus replication complexes and recruitment of the translation initiation machinery. PLoS Pathogens, 2019, 15, e1007842.	4.7	45
24	RNA processing bodies are disassembled during Old World alphavirus infection. Journal of General Virology, 2019, 100, 1375-1389.	2.9	9
25	Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. ELife, $2019,8,.$	6.0	48
26	The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses, 2018, 10, 105.	3.3	91
27	Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus. Viruses, 2018, 10, 226.	3.3	37
28	Autophagic flux blockage by accumulation of weakly basic tenovins leads to elimination of B-Raf mutant tumour cells that survive vemurafenib. PLoS ONE, 2018, 13, e0195956.	2.5	4
29	Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes. PLoS Pathogens, 2018, 14, e1006835.	4.7	50
30	Elongated and Shortened Peptidomimetic Inhibitors of the Proprotein Convertase Furin. ChemMedChem, 2017, 12, 613-620.	3.2	16
31	A Link Between a Common Mutation in CFTR and Impaired Innate and Adaptive Viral Defense. Journal of Infectious Diseases, 2017, 216, 1308-1317.	4.0	9
32	The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling. Journal of Virology, 2016, 90, 9743-9757.	3.4	127
33	Combined structural, biochemical and cellular evidence demonstrates that both FGDF motifs in alphavirus nsP3 are required for efficient replication. Open Biology, 2016, 6, 160078.	3.6	57
34	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
35	G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. Journal of Cell Biology, 2016, 212, 845-60.	5.2	480
36	Effects of an In-Frame Deletion of the <i>6k</i> Gene Locus from the Genome of Ross River Virus. Journal of Virology, 2016, 90, 4150-4159.	3.4	34

#	Article	IF	Citations
37	A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle― Alphavirus Vector and Empty Capsid Particles. PLoS ONE, 2016, 11, e0157435.	2.5	22
38	Real-time resolution of point mutations that cause phenovariance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E440-9.	7.1	75
39	FGDF Motif Regulation of Stress Granule Formation. DNA and Cell Biology, 2015, 34, 557-560.	1.9	18
40	Viral and Cellular Proteins Containing FGDF Motifs Bind G3BP to Block Stress Granule Formation. PLoS Pathogens, 2015, 11, e1004659.	4.7	133
41	Methods for the characterization of stress granules in virus infected cells. Methods, 2015, 90, 57-64.	3.8	45
42	Protection of Human Myeloid Dendritic Cell Subsets against Influenza A Virus Infection Is Differentially Regulated upon TLR Stimulation. Journal of Immunology, 2015, 194, 4422-4430.	0.8	17
43	Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization. Journal of Virology, 2015, 89, 11420-11437.	3.4	81
44	MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science, 2014, 346, 1486-1492.	12.6	105
45	The C-Terminal Repeat Domains of nsP3 from the Old World Alphaviruses Bind Directly to G3BP. Journal of Virology, 2014, 88, 5888-5893.	3.4	90
46	The Host Nonsense-Mediated mRNA Decay Pathway Restricts Mammalian RNA Virus Replication. Cell Host and Microbe, 2014, 16, 403-411.	11.0	150
47	Influenza A virusâ€mediated priming enhances cytokine secretion by human dendritic cells infected with S treptococcus pneumoniae. Cellular Microbiology, 2013, 15, 1385-1400.	2.1	19
48	Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility. PLoS Pathogens, 2012, 8, e1002670.	4.7	141
49	Accumulation of Autophagosomes in Semliki Forest Virus-Infected Cells Is Dependent on Expression of the Viral Glycoproteins. Journal of Virology, 2012, 86, 5674-5685.	3.4	25
50	Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection. Molecular Biology of the Cell, 2012, 23, 4701-4712.	2.1	148
51	A forward genetic screen reveals roles for <i>Nfkbid</i> , <i>Zeb1</i> , and <i>Ruvbl2</i> in humoral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12286-12293.	7.1	104
52	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
53	Multiple Polymorphisms Affect Expression and Function of the Neuropeptide S Receptor (NPSR1). PLoS ONE, 2011, 6, e29523.	2.5	30
54	Adenovirus type-35 vectors block human CD4 ⁺ T-cell activation via CD46 ligation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7499-7504.	7.1	33

#	Article	IF	CITATIONS
55	A novel quantitative flow cytometry-based assay for autophagy. Autophagy, 2010, 6, 634-641.	9.1	137
56	A mutation of Ikbkg causes immune deficiency without impairing degradation of IÂBÂ. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3046-3051.	7.1	21
57	A Differential Role for Macropinocytosis in Mediating Entry of the Two Forms of Vaccinia Virus into Dendritic Cells. PLoS Pathogens, 2010, 6, e1000866.	4.7	82
58	Direct Cleavage, Proteasomal Degradation and Sequestration: Three Mechanisms of Viral Subversion of Type I Interferon Responses. Journal of Innate Immunity, 2009, 1, 599-606.	3.8	10
59	Specific ligation to double-stranded RNA for analysis of cellular RNA::RNA interactions. Nucleic Acids Research, 2008, 36, e99-e99.	14.5	7
60	Role of Interferon Regulatory Factor 3 in Type I Interferon Responses in Rotavirus-Infected Dendritic Cells and Fibroblasts. Journal of Virology, 2007, 81, 2758-2768.	3.4	29
61	Increased human immunodeficiency virus type 1 Env expression and antibody induction using an enhanced alphavirus vector. Journal of General Virology, 2007, 88, 2774-2779.	2.9	10
62	Semliki Forest Virus Nonstructural Protein 2 Is Involved in Suppression of the Type I Interferon Response. Journal of Virology, 2007, 81, 8677-8684.	3.4	85
63	Bone Marrow Dendritic Cells Internalize Live RF-81 Bovine Rotavirus and Rotavirus-like Particles (RF) Tj ETQq1 1 0 Immunology, 2007, 65, 494-502.	.784314 r 2.7	gBT Overlo
64	Efficient expansion of HIV-1-specific T cell responses by homologous immunization with recombinant Semliki Forest virus particles. Virology, 2005, 341, 190-202.	2.4	16
65	Reversible Acid-Induced Inactivation of the Membrane Fusion Protein of Semliki Forest Virus. Journal of Virology, 2005, 79, 7942-7948.	3.4	12
66	Early Alpha/Beta Interferon Production by Myeloid Dendritic Cells in Response to UV-Inactivated Virus Requires Viral Entry and Interferon Regulatory Factor 3 but Not MyD88. Journal of Virology, 2005, 79, 10376-10385.	3.4	59
67	Importance of eIF2 \hat{I} ± Phosphorylation and Stress Granule Assembly in Alphavirus Translation Regulation. Molecular Biology of the Cell, 2005, 16, 3753-3763.	2.1	219
68	Semliki Forest virus produced in the absence of the 6K protein has an altered spike structure as revealed by decreased membrane fusion capacity. Virology, 2004, 325, 200-206.	2.4	22
69	Foot-and-Mouth Disease Virus 3C Protease Induces Cleavage of Translation Initiation Factors eIF4A and eIF4G within Infected Cells. Journal of Virology, 2000, 74, 272-280.	3.4	169
70	Replication-competent foot-and-mouth disease virus RNAs lacking capsid coding sequences. Microbiology (United Kingdom), 2000, 81, 1699-1702.	1.8	15