Christopher J Dares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8261027/publications.pdf

Version: 2024-02-01

304743 315739 1,912 39 22 citations h-index g-index papers

39 39 39 2750 docs citations times ranked citing authors all docs

38

#	Article	IF	Citations
1	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	13.7	317
2	Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)–Aqua Complex. Journal of the American Chemical Society, 2014, 136, 5531-5534.	13.7	209
3	Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15809-15814.	7.1	140
4	Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4935-4940.	7.1	124
5	Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes. Journal of the American Chemical Society, 2013, 135, 8432-8435.	13.7	96
6	Spectroscopic, Electrochemical, and Computational Aspects of the Charge Distribution in Ru(acac) ₂ (R- <i>o</i> -benzoquinonediimine) Complexes. Inorganic Chemistry, 2008, 47, 10110-10126.	4.0	95
7	CO ₂ reduction to acetate in mixtures of ultrasmall (Cu) _{<i>n</i>} ,(Ag) _{<i>m</i>} bimetallic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 278-283.	7.1	87
8	Interfacial Deposition of Ru(II) Bipyridine-Dicarboxylate Complexes by Ligand Substitution for Applications in Water Oxidation Catalysis. Journal of the American Chemical Society, 2018, 140, 719-726.	13.7	72
9	Two Electrode Collector–Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O ₂ . Analytical Chemistry, 2016, 88, 7076-7082.	6.5	67
10	Electrochemical oxidation of ²⁴³ Am(III) in nitric acid by a terpyridyl-derivatized electrode. Science, 2015, 350, 652-655.	12.6	61
11	Single-Site, Heterogeneous Electrocatalytic Reduction of CO ₂ in Water as the Solvent. ACS Energy Letters, 2017, 2, 1395-1399.	17.4	57
12	Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition. Journal of the American Chemical Society, 2017, 139, 14518-14525.	13.7	55
13	Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. Journal of the American Chemical Society, 2019, 141, 7926-7933.	13.7	55
14	Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores. Journal of the American Chemical Society, 2017, 139, 16248-16255.	13.7	52
15	One-Electron Activation of Water Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 6854-6857.	13.7	51
16	Stabilized photoanodes for water oxidation by integration of organic dyes, water oxidation catalysts, and electron-transfer mediators. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8523-8528.	7.1	37
17	A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12564-12571.	7.1	32
18	Lightâ€Driven Water Splitting Mediated by Photogenerated Bromine. Angewandte Chemie - International Edition, 2018, 57, 3449-3453.	13.8	31

#	Article	IF	Citations
19	Soft-donor dipicolinamide derivatives for selective actinide(<scp>iii</scp>)/lanthanide(<scp>iii</scp>) separation: the role of S- <i>vs.</i> O-donor sites. Chemical Communications, 2019, 55, 2441-2444.	4.1	29
20	A molecular tandem cell for efficient solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13256-13260.	7.1	28
21	Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9809-9813.	7.1	23
22	Kinetics of the Autoreduction of Hexavalent Americium in Aqueous Nitric Acid. Inorganic Chemistry, 2017, 56, 8295-8301.	4.0	23
23	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	7.4	23
24	Self-Assembled Chromophore–Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal of Physical Chemistry C, 2019, 123, 30039-30045.	3.1	22
25	Proton-Induced Disproportionation of a Ruthenium Noninnocent Ligand Complex Yielding a Strong Oxidant and a Strong Reductant. Inorganic Chemistry, 2013, 52, 169-181.	4.0	18
26	Effect of Ionizing Radiation on the Redox Chemistry of Penta- and Hexavalent Americium. Inorganic Chemistry, 2019, 58, 8551-8559.	4.0	18
27	Proton-Coupled Electron Transfer Reduction of a Quinone by an Oxide-Bound Riboflavin Derivative. Journal of Physical Chemistry C, 2016, 120, 23984-23988.	3.1	16
28	Analysis of Homogeneous Water Oxidation Catalysis with Collector–Generator Cells. Inorganic Chemistry, 2016, 55, 512-517.	4.0	16
29	Electrochemical oxidation of trivalent americium using a dipyrazinylpyridine modified ITO electrode. Chemical Communications, 2019, 55, 4035-4038.	4.1	16
30	Hydroxyphenyl- and octoxyphenyl-substituted dipyrazinylpyridine complexes of ruthenium(II), iron(II) and nickel(II). Inorganica Chimica Acta, 2011, 374, 606-619.	2.4	15
31	Lightâ€Driven Water Splitting Mediated by Photogenerated Bromine. Angewandte Chemie, 2018, 130, 3507-3511.	2.0	11
32	Chemical approaches to artificial photosynthesis: A molecular, dye-sensitized photoanode for O2 production prepared by layer-by-layer self-assembly. Journal of Chemical Physics, 2020, 152, 244706.	3.0	6
33	Indium Tin-Doped Oxide (ITO) as a High Activity Water Oxidation Photoanode. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40127-40133.	8.0	3
34	catena-Poly[[[cis-aquadibromidocobalt(II)]-ν-(pyrazine-2-carboxylic acid)-κ3N1,O:N4] monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1798-m1799.	0.2	2
35	Electrochemical behaviour of uranium at a tripolyphosphate modified ITO electrode. Chemical Communications, 2021, 57, 10891-10894.	4.1	2
36	Using a Pushâ^Pull Azobenzene Haptan to Probe Surfaceâ^Core Electronic Communication in Surface-Functionalized CdS Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 20410-20416.	3.1	1

#	Article	IF	CITATIONS
37	Redox-active dinuclear oxorhenium(V) pyrazolate complexes. Inorganica Chimica Acta, 2021, 516, 120126.	2.4	1
38	Photocatalytic Conversion of Am(III) to Am(VI) Using a TiO ₂ Electrode. ACS Applied Energy Materials, 2021, 4, 11854-11857.	5.1	1
39	Crystal structure of a trigonal polymorph of aquadioxidobis(pentane-2,4-dionato-l̂º ²) Tj ETQq1 1 0 2022, 78, 40-43.	.784314 r 0.5	gBT /Overlock O