Wenyan Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/825999/publications.pdf

Version: 2024-02-01

	76326	110387
8,040	40	64
citations	h-index	g-index
67	67	0053
6/	6/	9853
docs citations	times ranked	citing authors
	8,040 citations 67 docs citations	8,040 40 citations h-index 67 67

#	Article	IF	CITATIONS
1	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	109
2	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie, 2022, 134, .	2.0	16
3	Biodegradable MoO _{<i>x</i>} @MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing. RSC Advances, 2022, 12, 8862-8877.	3. 6	12
4	A Copper Peroxide Fenton Nanoagent-Hydrogel as an <i>In Situ</i> pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Applied Bio Materials, 2022, 5, 1779-1793.	4.6	16
5	The age of bioinspired molybdenumâ€involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View, 2021, 2, 20200188.	5. 3	49
6	An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 2021, 418, 129431.	12.7	140
7	Mn2+-doped ZrO2@PDA nanocomposite for multimodal imaging-guided chemo-photothermal combination therapy. Chinese Chemical Letters, 2021, 32, 2405-2410.	9.0	25
8	Surface-Enhanced Raman Scattering Quantitative Analysis of Ethanol Drop-Coating Silver Nanocubes on Gold Film. Journal of Nanoscience and Nanotechnology, 2021, 21, 4715-4725.	0.9	1
9	A Bi ₂ S ₃ @mSiO ₂ @Ag nanocomposite for enhanced CT visualization and antibacterial response in the gastrointestinal tract. Journal of Materials Chemistry B, 2020, 8, 666-676.	5.8	9
10	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	10.0	152
11	Stimuli-Responsive Small-on-Large Nanoradiosensitizer for Enhanced Tumor Penetration and Radiotherapy Sensitization. ACS Nano, 2020, 14, 10001-10017.	14.6	93
12	Bi ³⁺ -Doped BaYF ₅ :Yb,Er Upconversion Nanoparticles with Enhanced Luminescence and Application Case for X-ray Computed Tomography Imaging. Inorganic Chemistry, 2020, 59, 17906-17915.	4.0	33
13	Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy. ACS Nano, 2020, 14, 13016-13029.	14.6	42
14	A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 2020, 12, 8415-8424.	5.6	43
15	Liquidâ€Phase Exfoliation and Functionalization of MoS ₂ Nanosheets for Effective Antibacterial Application. ChemBioChem, 2020, 21, 2373-2380.	2.6	31
16	Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. Materials Horizons, 2020, 7, 1834-1844.	12.2	56
17	Nanostructured Ceria-Praseodymium and Ceria-Terbium Mixed Oxides: Relationship Between Structural Change and Catalytic Activity Towards CO Oxidation. Journal of Nanoscience and Nanotechnology, 2019, 19, 5999-6005.	0.9	1
18	Feasibility of Biological Applications for Zirconium Nitride Powders Synthesized by Gas–Solid Elemental Combination Method. Journal of Nanoscience and Nanotechnology, 2019, 19, 3319-3325.	0.9	1

#	Article	IF	CITATIONS
19	Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS ₂ . Nanoscale, 2019, 11, 4767-4780.	5.6	47
20	Peroxidase-like activity of MoS ₂ nanoflakes with different modifications and their application for H ₂ O ₂ and glucose detection. Journal of Materials Chemistry B, 2018, 6, 487-498.	5.8	130
21	Intelligent MoS ₂ Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS Applied Materials & Amp; Interfaces, 2018, 10, 4271-4284.	8.0	137
22	Biodegradable MoO $<$ sub $>$ x $<$ /sub $>$ nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale, 2018, 10, 1517-1531.	5.6	144
23	Bi ₂ S ₃ –Tween 20 Nanodots Loading Pl3K Inhibitor, LY294002, for Mild Photothermal Therapy of LoVo Cells In Vitro and In Vivo. Advanced Healthcare Materials, 2018, 7, e1800830.	7.6	32
24	Functionalized MoS ₂ Nanovehicle with Nearâ€Infrared Laserâ€Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteriaâ€Infected Wound Therapy. Small, 2018, 14, e1802290.	10.0	259
25	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 11554-11558.	2.0	29
26	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11384-11388.	13.8	196
27	Synthesis of Surfaceâ€Modificationâ€Oriented Nanosized Molybdenum Disulfide with High Peroxidaseâ€Like Catalytic Activity for H ₂ O ₂ and Cholesterol Detection. Chemistry - A European Journal, 2018, 24, 15868-15878.	3.3	33
28	Atom economy and green elimination of nitric oxide using ZrN powders. Royal Society Open Science, 2018, 5, 171516.	2.4	0
29	Three-dimensional angiography fused with CT/MRI for multimodal imaging of nanoparticles based on Ba ₄ Yb ₃ F ₁₇ :Lu ³⁺ ,Gd ³⁺ . Nanoscale, 2018, 10, 13402-13409.	5.6	15
30	Impact of Titanium Dioxide and Fullerenol Nanoparticles on Caco-2 Gut Epithelial Cells. Journal of Nanoscience and Nanotechnology, 2018, 18, 2387-2393.	0.9	7
31	Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF ₄ :Yb,Er upconversion nanoparticles in mice via different administration routes. Nanoscale, 2017, 9, 4497-4507.	5.6	61
32	Protein-directed synthesis of Bi ₂ S ₃ nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Advances, 2017, 7, 17505-17513.	3.6	15
33	One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. Nano Research, 2017, 10, 2667-2682.	10.4	48
34	MoS ₂ -Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21362-21370.	8.0	54
35	Mesoporous Bamboo Charcoal Nanoparticles as a New Nearâ€Infrared Responsive Drug Carrier for Imagingâ€Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor. Advanced Healthcare Materials, 2016, 5, 1627-1637.	7.6	34
36	The polyvinylpyrrolidone functionalized rGO/Bi ₂ S ₃ nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. Nanoscale, 2016, 8, 11531-11542.	5.6	71

#	Article	IF	CITATIONS
37	Synthesis of PVP-functionalized ultra-small MoS ₂ nanoparticles with intrinsic peroxidase-like activity for H ₂ O ₂ and glucose detection. RSC Advances, 2016, 6, 81174-81183.	3.6	57
38	Functionalized Nano-MoS ₂ with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano, 2016, 10, 11000-11011.	14.6	812
39	Good Biocompatibility and Sintering Properties of Zirconia Nanoparticles Synthesized via Vapor-phase Hydrolysis. Scientific Reports, 2016, 6, 35020.	3.3	45
40	Fluorescent supramolecular micelles for imaging-guided cancer therapy. Nanoscale, 2016, 8, 5302-5312.	5.6	32
41	One-pot synthesis of PEGylated plasmonic MoO3–x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials, 2016, 76, 11-24.	11.4	171
42	Phytotoxicity, Translocation, and Biotransformation of NaYF ₄ Upconversion Nanoparticles in a Soybean Plant. Small, 2015, 11, 4774-4784.	10.0	49
43	Smart MoS ₂ /Fe ₃ O ₄ Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics, 2015, 5, 931-945.	10.0	234
44	Bismuth Sulfide Nanorods as a Precision Nanomedicine for <i>in Vivo</i> Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 2015, 9, 696-707.	14.6	503
45	Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. Nanoscale, 2015, 7, 12581-12591.	5.6	60
46	Enhanced Multifunctional Properties of Graphene Nanocomposites with Nacre‣ike Structures. Advanced Engineering Materials, 2015, 17, 523-531.	3.5	15
47	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	14.9	194
48	Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for <i>In Vivo</i> Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano, 2015, 9, 12451-12463.	14.6	388
49	TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.	11.4	172
50	Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. Journal of Materials Chemistry B, 2014, 2, 1379.	5.8	75
51	A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. Journal of Materials Chemistry A, 2014, 2, 12296.	10.3	113
52	Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. Dalton Transactions, 2014, 43, 3861.	3.3	36
53	A simple and efficient synthetic route for preparation of NaYF ₄ upconversion nanoparticles by thermo-decomposition of rare-earth oleates. CrystEngComm, 2014, 16, 5650-5661.	2.6	35
54	Mesoporous NaYbF4@NaGdF4 core-shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging. Biomaterials, 2014, 35, 7666-7678.	11.4	94

#	Article	IF	CITATIONS
55	WS ₂ nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale, 2014, 6, 10394-10403.	5.6	301
56	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	14.6	813
57	Oneâ€Pot Templateâ€Free Synthesis of NaYF ₄ Upconversion Hollow Nanospheres for Bioimaging and Drug Delivery. Chemistry - an Asian Journal, 2014, 9, 1655-1662.	3.3	22
58	Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation. Small, 2013, 9, 1929-1938.	10.0	174
59	Upconversion: Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation (Small 11/2013). Small, 2013, 9, 1928-1928.	10.0	8
60	Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. Journal of Materials Chemistry, 2012, 22, 6974.	6.7	124
61	Controllable synthesis of Gd2O(CO3)2·H2O@silica–FITC nanoparticles with size-dependent optical and magnetic resonance imaging properties. New Journal of Chemistry, 2012, 36, 2599.	2.8	15
62	TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Advances, 2012, 2, 7037.	3.6	98
63	Size-tunable synthesis of lanthanide-doped Gd ₂ O ₃ nanoparticles and their applications for optical and magnetic resonance imaging. Journal of Materials Chemistry, 2012, 22, 966-974.	6.7	165
64	Enhanced Red Emission from GdF ₃ :Yb ³⁺ ,Er ³⁺ Upconversion Nanocrystals by Li ⁺ Doping and Their Application for Bioimaging. Chemistry - A European Journal, 2012, 18, 9239-9245.	3.3	166
65	Mn ²⁺ Dopantâ€Controlled Synthesis of NaYF ₄ :Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Advanced Materials, 2012, 24, 1226-1231.	21.0	758
66	Facile Fabrication of Rare-Earth-Doped Gd ₂ O ₃ Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. Journal of Physical Chemistry C, 2011, 115, 23790-23796.	3.1	170