Carolina Serena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258880/publications.pdf

Version: 2024-02-01

218677 197818 2,488 52 26 49 h-index citations g-index papers 52 52 52 3821 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mn(II) Complexes of Enlarged Scorpiand-Type Azamacrocycles as Mimetics of MnSOD Enzyme. Applied Sciences (Switzerland), 2022, 12, 2447.	2.5	O
2	The Gut Microbiota Metabolite Succinate Promotes Adipose Tissue Browning in Crohn's Disease. Journal of Crohn's and Colitis, 2022, 16, 1571-1583.	1.3	11
3	Glycogen accumulation in adipocyte precursors from elderly and obese subjects triggers inflammation via <scp>SIRT1</scp> /6 signaling. Aging Cell, 2022, 21, .	6.7	3
4	Crohn's Disease Increases the Mesothelial Properties of Adipocyte Progenitors in the Creeping Fat. International Journal of Molecular Sciences, 2021, 22, 4292.	4.1	3
5	Gestational diabetes impacts fetal precursor cell responses with potential consequences for offspring. Stem Cells Translational Medicine, 2020, 9, 351-363.	3.3	14
6	Microbial Signature in Adipose Tissue of Crohn's Disease Patients. Journal of Clinical Medicine, 2020, 9, 2448.	2.4	15
7	Molecular Epidemiology Reveals Low Genetic Diversity among Cryptococcus neoformans Isolates from People Living with HIV in Lima, Peru, during the Pre-HAART Era. Pathogens, 2020, 9, 665.	2.8	7
8	Adipose stem cells from patients with Crohn's disease show a distinctive DNA methylation pattern. Clinical Epigenetics, 2020, 12, 53.	4.1	18
9	SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nature Immunology, 2019, 20, 581-592.	14.5	168
10	Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells. International Journal of Obesity, 2019, 43, 1256-1268.	3.4	47
11	Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME Journal, 2018, 12, 1642-1657.	9.8	260
12	Survivin, a key player in cancer progression, increases in obesity and protects adipose tissue stem cells from apoptosis. Cell Death and Disease, 2017, 8, e2802-e2802.	6.3	27
13	Angiopoietin-like protein 8/betatrophin as a new determinant of type 2 diabetes remission after bariatric surgery. Translational Research, 2017, 184, 35-44.e4.	5.0	22
14	Crohn's Disease Disturbs the Immune Properties of Human Adipose-Derived Stem Cells Related to Inflammasome Activation. Stem Cell Reports, 2017, 9, 1109-1123.	4.8	49
15	Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands. Journal of Inorganic Biochemistry, 2016, 163, 230-239.	3.5	10
16	Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue. Stem Cells Translational Medicine, 2016, 5, 464-475.	3.3	96
17	Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells. Stem Cells, 2016, 34, 2559-2573.	3.2	133
18	Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Molecular Metabolism, 2016, 5, 5-18.	6.5	50

#	Article	IF	CITATIONS
19	International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, 2015, 53, 313-337.	0.7	252
20	Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity. Journal of Inorganic Biochemistry, 2015, 143, 1-8.	3. 5	34
21	Significant In Vivo Anti-Inflammatory Activity of Pytren4Q-Mn a Superoxide Dismutase 2 (SOD2) Mimetic Scorpiand-Like Mn (II) Complex. PLoS ONE, 2015, 10, e0119102.	2.5	19
22	Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-like Ligands. Journal of the American Chemical Society, 2012, 134, 9644-9656.	13.7	78
23	A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts. Journal of Biological Chemistry, 2012, 287, 21970-21979.	3.4	52
24	Global VGIIa isolates are of comparable virulence to the major fatal Cryptococcus gattii Vancouver Island outbreak genotype. Clinical Microbiology and Infection, 2011, 17, 251-258.	6.0	60
25	Efficacy of voriconazole in a murine model of invasive paecilomycosis. International Journal of Antimicrobial Agents, 2010, 35, 362-365.	2.5	11
26	Scedosporium aurantiacumis as virulent asS. prolificans, and shows strain-specific virulence differences, in a mouse model. Medical Mycology, 2010, 48, S45-S51.	0.7	29
27	Effects of Double and Triple Combinations of Antifungal Drugs in a Murine Model of Disseminated Infection by <i>Scedosporium prolificans</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2153-2155.	3.2	48
28	Different virulence of the species of the <i>Pseudallescheria boydii </i> complex. Medical Mycology, 2009, 47, 371-374.	0.7	59
29	Efficacy of Triazoles in a Murine Disseminated Infection by <i>Candida krusei</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 3585-3588.	3.2	8
30	Posaconazole Combined with Amphotericin B, an Effective Therapy for a Murine Disseminated Infection Caused by <i>Rhizopus oryzae</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 3786-3788.	3.2	84
31	In Vitro Interactions of Micafungin with Amphotericin B against Clinical Isolates of <i>Candida</i> spp. Antimicrobial Agents and Chemotherapy, 2008, 52, 1529-1532.	3.2	13
32	Posaconazole efficacy in a murine disseminated infection caused by Paecilomyces lilacinus. Journal of Antimicrobial Chemotherapy, 2008, 63, 361-364.	3.0	11
33	In Vitro Antifungal Susceptibilities of Five Species of <i>Sporothrix</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 732-734.	3.2	165
34	Micafungin combined with fluconazole, an effective therapy for murine blastoschizomycosis. Journal of Antimicrobial Chemotherapy, 2008, 61, 877-879.	3.0	7
35	Efficacy of voriconazole in a murine model of cryptococcal central nervous system infection. Journal of Antimicrobial Chemotherapy, 2007, 60, 162-165.	3.0	34
36	Combined Therapies in a Murine Model of Blastoschizomycosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 2608-2610.	3. 2	4

#	Article	IF	CITATIONS
37	Effect of antifungal treatment in a murine model of blastoschizomycosis. International Journal of Antimicrobial Agents, 2007, 29, 79-83.	2.5	11
38	In vitro activity of micafungin combined with itraconazole against Candida spp International Journal of Antimicrobial Agents, 2007, 30, 463-465.	2.5	11
39	Distinct signalling pathways coordinately contribute to virulence of Fusarium oxysporum on mammalian hosts. Microbes and Infection, 2006, 8, 2825-2831.	1.9	20
40	Antifungal Susceptibilities of the Species of the Pseudallescheria boydii Complex. Antimicrobial Agents and Chemotherapy, 2006, 50, 4211-4213.	3.2	142
41	Combined antifungal therapy in a murine infection by Candida glabrata. Journal of Antimicrobial Chemotherapy, 2006, 58, 1295-1298.	3.0	20
42	Efficacy of Voriconazole in a Guinea Pig Model of Invasive Trichosporonosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 2240-2243.	3.2	26
43	In Vitro Interactions of Micafungin with Other Antifungal Drugs against Clinical Isolates of Four Species of Cryptococcus. Antimicrobial Agents and Chemotherapy, 2005, 49, 2994-2996.	3.2	27
44	Activities of Flucytosine, Fluconazole, Amphotericin B, and Micafungin in a Murine Model of Disseminated Infection by Candida glabrata. Antimicrobial Agents and Chemotherapy, 2005, 49, 4757-4759.	3.2	15
45	Efficacy of Micafungin in Combination with Other Drugs in a Murine Model of Disseminated Trichosporonosis. Antimicrobial Agents and Chemotherapy, 2005, 49, 497-502.	3.2	44
46	In vitro interaction of micafungin with conventional and new antifungals against clinical isolates of Trichosporon, Sporobolomyces and Rhodotorula. Journal of Antimicrobial Chemotherapy, 2005, 55, 1020-1023.	3.0	30
47	In Vitro Interactions of Approved and Novel Drugs against Paecilomyces spp. Antimicrobial Agents and Chemotherapy, 2004, 48, 2727-2729.	3.2	43
48	In Vitro Antifungal Susceptibilities of Uncommon Basidiomycetous Yeasts. Antimicrobial Agents and Chemotherapy, 2004, 48, 2724-2726.	3.2	38
49	A novel murine model of cerebral scedosporiosis: lack of efficacy of amphotericin B. Journal of Antimicrobial Chemotherapy, 2004, 54, 1092-1095.	3.0	21
50	Interaction of granulocyte colony-stimulating factor and high doses of liposomal amphotericin B in the treatment of systemic murine scedosporiosis. Diagnostic Microbiology and Infectious Disease, 2004, 50, 247-251.	1.8	44
51	In Vitro Activities of New Antifungal Agents against Chaetomium spp. and Inoculum Standardization. Antimicrobial Agents and Chemotherapy, 2003, 47, 3161-3164.	3.2	42
52	Efficacy of Voriconazole in Treatment of Systemic Scedosporiosis in Neutropenic Mice. Antimicrobial Agents and Chemotherapy, 2003, 47, 3976-3978.	3.2	53