Thomas N Ferraro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of long interspersed elementâ€1 retrotransposons as potential risk factors for idiopathic temporal lobe epilepsy. Epilepsia, 2021, 62, 1329-1342.	5.1	6
2	Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. American Journal of Human Genetics, 2021, 108, 965-982.	6.2	35
3	Effectiveness of a Team-Based Learning exercise in the learning outcomes of a medical pharmacology course: insight from struggling students. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1941-1948.	3.0	3
4	Genetic Variation in PADI6-PADI4 on 1p36.13 Is Associated with Common Forms of Human Generalized Epilepsy. Genes, 2021, 12, 1441.	2.4	7
5	Genetics and prescription opioid use (GaPO): study design for consenting a cohort from an existing biobank to identify clinical and genetic factors influencing prescription opioid use and abuse. BMC Medical Genomics, 2021, 14, 253.	1.5	6
6	Epidemiological study of <i>Trichosporon asahii</i> infections over the past 23 years. Epidemiology and Infection, 2020, 148, e169.	2.1	41
7	Genetic Causes of Medication-Resistant Epilepsy. , 2020, , 69-78.		0
8	Assessment of Probable Opioid Use Disorder Using Electronic Health Record Documentation. JAMA Network Open, 2020, 3, e2015909.	5.9	41
9	Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Scientific Reports, 2020, 10, 20490.	3.3	24
10	Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain, 2020, 143, 2106-2118.	7.6	47
11	The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Frontiers in Neurology, 2020, 11, 520.	2.4	12
12	Cognitive and behavioral effects of brief seizures in mice. Epilepsy and Behavior, 2019, 98, 249-257.	1.7	2
13	Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. American Journal of Human Genetics, 2019, 105, 267-282.	6.2	237
14	The imperative of clinical and molecular research on neonatal opioid withdrawal syndrome. Molecular Psychiatry, 2019, 24, 1568-1571.	7.9	5
15	Deletion of the vesicular monoamine transporter 1 (vmat1/slc18a1) gene affects dopamine signaling. Brain Research, 2019, 1712, 151-157.	2.2	7
16	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
17	Reading <scp>LINE</scp> s within the cocaine addicted brain. Brain and Behavior, 2017, 7, e00678.	2.2	11
18	Analysis of LINE-1 Elements in DNA from Postmortem Brains of Individuals with Schizophrenia. Neuropsychopharmacology, 2017, 42, 2602-2611.	5.4	60

#	Article	IF	CITATIONS
19	The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy and Behavior, 2017, 73, 214-235.	1.7	54
20	Barriers to the use of genetic information for the development of new epilepsy treatments. Expert Review of Neurotherapeutics, 2016, 16, 5-8.	2.8	1
21	BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice. Frontiers in Systems Neuroscience, 2014, 8, 121.	2.5	61
22	Analysis of candidate genes for morphine preference quantitative trait locus Mop2. Neuroscience, 2014, 277, 403-416.	2.3	14
23	The relationship between genes affecting the development of epilepsy and approaches to epilepsy therapy. Expert Review of Neurotherapeutics, 2014, 14, 329-352.	2.8	3
24	Further evidence for association of polymorphisms in the <i>CNR1</i> gene with cocaine addiction: confirmation in an independent sample and meta-analysis. Addiction Biology, 2013, 18, 702-708.	2.6	38
25	Low frequency genetic variants in the μ-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine. Neuroscience Letters, 2013, 542, 71-75.	2.1	33
26	Quantitative trait loci analysis reveals candidate genes implicated in regulating functional deficit and CNS vascular permeability in CD8 T cell-initiated blood–brain barrier disruption. BMC Genomics, 2013, 14, 678.	2.8	2
27	Case-control association study of WLS variants in opioid and cocaine addicted populations. Psychiatry Research, 2013, 208, 62-66.	3.3	2
28	MOR Is Not Enough: Identification of Novel mu-Opioid Receptor Interacting Proteins Using Traditional and Modified Membrane Yeast Two-Hybrid Screens. PLoS ONE, 2013, 8, e67608.	2.5	22
29	Association study of the β-arrestin 2 gene (ARRB2) with opioid and cocaine dependence in a European–American population. Psychiatric Genetics, 2012, 22, 141-145.	1.1	8
30	Discovery of epilepsy susceptibility genes: implications for therapy development and pharmacogenomics. Pharmacogenomics, 2012, 13, 731-734.	1.3	6
31	Quantitative trait locus on distal chromosome 1 regulates the occurrence of spontaneous spikeâ€wave discharges in DBA/2 mice. Epilepsia, 2012, 53, 1429-1435.	5.1	8
32	In Vitro and Ex Vivo Analysis of CHRNA3 and CHRNA5 Haplotype Expression. PLoS ONE, 2011, 6, e23373.	2.5	19
33	Association study of polymorphisms in the autosomal mitochondrial complex I subunit gene, NADH dehydrogenase (ubiquinone) flavoprotein 2, and bipolar disorder. Psychiatric Genetics, 2011, 21, 51-52.	1.1	10
34	Quantitative trait loci for electrical seizure threshold mapped in C57BLKS/J and C57BL/10SnJ mice. Genes, Brain and Behavior, 2011, 10, 309-315.	2.2	6
35	Association between polymorphisms in the metallophosphoesterase (<i>MPPE1</i>) gene and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 830-836.	1.7	4
36	Potassium channel activity and glutamate uptake are impaired in astrocytes of seizureâ€susceptible DBA/2 mice. Epilepsia, 2010, 51, 1707-1713.	5.1	62

#	Article	IF	CITATIONS
37	Strategies for studying the epilepsy genome. Epilepsia, 2010, 51, 58-58.	5.1	0
38	Association analysis between polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes with cocaine dependence. Neuroscience Letters, 2010, 473, 87-91.	2.1	25
39	Association analysis between polymorphisms in the myo-inositol monophosphatase 2 (IMPA2) gene and bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 1515-1519.	4.8	12
40	Pharmacogenetic considerations in the treatment of psychiatric disorders. Expert Opinion on Pharmacotherapy, 2010, 11, 423-439.	1.8	36
41	Pharmacogenetics of AED Development. , 2010, , 159-172.		0
42	Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence. Neuroscience Letters, 2009, 453, 199-203.	2.1	7
43	Association analysis between polymorphisms in the dopamine D3 receptor (DRD3) gene and cocaine dependence. Psychiatric Genetics, 2009, 19, 275-276.	1.1	12
44	Association between polymorphisms in the vesicle-associated membrane protein-associated protein A (VAPA) gene on chromosome 18p and bipolar disorder. Journal of Neural Transmission, 2008, 115, 1339-1345.	2.8	11
45	Association between variation in the vesicular monoamine transporter 1 gene on chromosome 8p and anxiety-related personality traits. Neuroscience Letters, 2008, 434, 41-45.	2.1	24
46	Genetic variants in the cocaine- and amphetamine-regulated transcript gene (CARTPT) and cocaine dependence. Neuroscience Letters, 2008, 440, 280-283.	2.1	14
47	Association between Polymorphisms in the Vesicular Monoamine Transporter 1 Gene <i>(VMAT1/SLC18A1)</i> on Chromosome 8p and Schizophrenia. Neuropsychobiology, 2008, 57, 55-60.	1.9	36
48	Association Between the Catechol-O-Methyltransferase Val158Met Polymorphism and Cocaine Dependence. Neuropsychopharmacology, 2008, 33, 3078-3084.	5.4	53
49	Fine Mapping of a Major QTL Influencing Morphine Preference in C57BL/6 and DBA/2 Mice Using Congenic Strains. Neuropsychopharmacology, 2008, 33, 2801-2809.	5.4	18
50	Association analysis of the pituitary adenylate cyclase-activating polypeptide (PACAP/ADCYAP1) gene in bipolar disorder. Psychiatric Genetics, 2008, 18, 53-58.	1.1	5
51	Defining the Role of Anti-epileptic Pharmacogenetics in Psychiatric Drug Therapy. Psychiatric Annals, 2008, 38, .	0.1	0
52	Quantitative trait locus for seizure susceptibility on mouse chromosome 5 confirmed with reciprocal congenic strains. Physiological Genomics, 2007, 31, 458-462.	2.3	17
53	Novel De Novo Mutation of a Conserved SCN1A Amino-Acid Residue (R1596). Pediatric Neurology, 2007, 37, 303-305.	2.1	7
54	Identification of three mouse μ-opioid receptor (MOR) gene (Oprm1) splice variants containing a newly identified alternatively spliced exon. Gene, 2007, 388, 135-147.	2.2	30

#	Article	IF	CITATIONS
55	ldentification of five mouse μ-opioid receptor (MOR) gene (Oprm1) splice variants containing a newly identified alternatively spliced exon. Gene, 2007, 395, 98-107.	2.2	38
56	Analysis of a Quantitative Trait Locus for Seizure Susceptibility in Mice Using Bacterial Artificial Chromosome-Mediated Gene Transfer. Epilepsia, 2007, 48, 1667-1677.	5.1	26
57	Chemoconvulsant-induced Seizure Susceptibility: Toward a Common Genetic Basis?. Epilepsia, 2007, 48, 48-52.	5.1	10
58	ldentification and functional significance of polymorphisms in the μ-opioid receptor gene (Oprm) promoter of C57BL/6 and DBA/2 mice. Neuroscience Research, 2006, 55, 244-254.	1.9	19
59	Analysis of variations in the NAPG gene on chromosome 18p11 in bipolar disorder. Psychiatric Genetics, 2006, 16, 3-8.	1.1	16
60	No association between polymorphisms in the prostate apoptosis factor-4 gene and cocaine dependence. Psychiatric Genetics, 2006, 16, 193-196.	1.1	1
61	Analysis of variations in the tryptophan hydroxylase-2 (TPH2) gene in cocaine dependence. Addiction Biology, 2006, 11, 76-83.	2.6	18
62	Defining the clinical role of pharmacogenetics in antiepileptic drug therapy. Pharmacogenomics Journal, 2006, 6, 357-359.	2.0	9
63	Variations in the Vesicular Monoamine Transporter 1 Gene (VMAT1/SLC18A1) are Associated with Bipolar I Disorder. Neuropsychopharmacology, 2006, 31, 2739-2747.	5.4	59
64	Role of genetics in the diagnosis and treatment of epilepsy. Expert Review of Neurotherapeutics, 2006, 6, 1789-1800.	2.8	17
65	Challenges and opportunities in the application of pharmacogenetics to antiepileptic drug therapy. Pharmacogenomics, 2006, 7, 89-103.	1.3	15
66	Polygenic epilepsy. Advances in Neurology, 2006, 97, 389-98.	0.8	5
67	Association of a polymorphism in the Homer1 gene with cocaine dependence in an African American population. Psychiatric Genetics, 2005, 15, 277-283.	1.1	27
68	Lack of association between variations in the brain-derived neurotrophic factor (BDNF) gene and temporal lobe epilepsy. Epilepsy Research, 2005, 66, 59-62.	1.6	21
69	Lack of association between single nucleotide polymorphisms in the corticotropin releasing hormone receptor 1 (CRHR1) gene and alcohol dependence. Journal of Psychiatric Research, 2005, 39, 475-479.	3.1	19
70	Confirmation of the association between a polymorphism in the promoter region of the prodynorphin gene and cocaine dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 139B, 106-108.	1.7	39
71	Confirmation of a Major QTL Influencing Oral Morphine Intake in C57 and DBA Mice Using Reciprocal Congenic Strains. Neuropsychopharmacology, 2005, 30, 742-746.	5.4	37
72	No association between common variations in the human alpha 2 subunit gene (ATP1A2) of the sodium–potassium-transporting ATPase and idiopathic generalized epilepsy. Neuroscience Letters, 2005, 382, 33-38.	2.1	11

#	Article	IF	CITATIONS
73	Recruitment rates and fear of phlebotomy in pediatric patients in a genetic study of epilepsy. Epilepsy and Behavior, 2005, 6, 444-446.	1.7	27
74	The relationship between the pharmacology of antiepileptic drugs and human gene variation: An overview. Epilepsy and Behavior, 2005, 7, 18-36.	1.7	75
75	No association between common variations in the neuronal nicotinic acetylcholine receptor alpha2 subunit gene (CHRNA2) and bipolar I disorder. Psychiatry Research, 2005, 135, 171-177.	3.3	10
76	Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene. Mammalian Genome, 2004, 15, 239-251.	2.2	123
77	Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Research, 2004, 58, 175-183.	1.6	136
78	Genetic influences on responsiveness to anticonvulsant drugs. , 2002, , 333-359.		0
79	Mouse strain variation in maximal electroshock seizure threshold. Brain Research, 2002, 936, 82-86.	2.2	57
80	Quantitative Genetic Study of Maximal Electroshock Seizure Threshold in Mice: Evidence for a Major Seizure Susceptibility Locus on Distal Chromosome 1. Genomics, 2001, 75, 35-42.	2.9	48
81	Lack of Association Between an Interleukin 1 Beta (IL-1β) Gene Variation and Refractory Temporal Lobe Epilepsy. Epilepsia, 2001, 42, 782-784.	5.1	50
82	Effects of Strain, Behavior and Age on the Self-Administration of Ethanol, Nicotine, Cocaine and Morphine by Two Rat Strains. Neuropsychobiology, 2001, 44, 150-155.	1.9	21
83	Mapping Loci for Pentylenetetrazol-Induced Seizure Susceptibility in Mice. Journal of Neuroscience, 1999, 19, 6733-6739.	3.6	179
84	Kainate and AMPA receptor binding in seizure-prone and seizure-resistant inbred mouse strains. Brain Research, 1998, 780, 1-8.	2.2	30
85	Genetic influences on electrical seizure threshold. Brain Research, 1998, 813, 207-210.	2.2	43
86	Genotyping microsatellite polymorphisms by agarose gel electrophoresis with ethidium bromide staining. Psychiatric Genetics, 1998, 8, 227-233.	1.1	13
87	Human Golf gene polymorphisms and vulnerability to bipolar disorder. Psychiatric Genetics, 1998, 8, 235-238.	1.1	42
88	The effects of repeated morphine exposure on mu opioid receptor number and affinity in C57BL/6J and DBA/2J mice. Life Sciences, 1997, 61, 2057-2064.	4.3	35
89	Human mu opioid receptor gene polymorphisms and vulnerability to substance abuse. Addiction Biology, 1997, 2, 303-308.	2.6	75
90	Maternal inheritance and chromosome 18 allele sharing in unilineal bipolar illness pedigrees. , 1996, 67, 202-207.		119

#	Article	IF	CITATIONS
91	Differential Susceptibility to Seizures Induced by Systemic Kainic Acid Treatment in Mature DBA/2J and C57BLl6J Mice. Epilepsia, 1995, 36, 301-307.	5.1	102
92	Rat strain and age differences in kainic acid induced seizures. Epilepsy Research, 1995, 20, 151-159.	1.6	68
93	Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nature Genetics, 1994, 7, 54-58.	21.4	196
94	N-methyl-4-phenylpyridinium (MPP+) potentiates the killing of cultured hepatocytes by catecholamines. Chemico-Biological Interactions, 1993, 88, 209-223.	4.0	1
95	Genomic Screening for Genes Predisposing to Bipolar Disease. Psychiatric Genetics, 1992, 2, 191-208.	1.1	16
96	In vivo modulation of excitatory amino acid receptors: microdialysis studies on N-methyl-d-aspartate-evoked striatal dopamine release and effects of antagonists. Brain Research, 1992, 574, 42-48.	2.2	50
97	Partial characterization of kainic acid-induced striatal dopamine release using in vivo microdialysis. Brain Research, 1991, 543, 69-76.	2.2	18
98	Strain differences in convulsive response to the excitotoxin kainic acid. NeuroReport, 1991, 2, 141-144.	1.2	34
99	In Vivo Microdialysis Study of Brain Ethanol Concentrations in Rats Following Oral Self-Administration. Alcoholism: Clinical and Experimental Research, 1991, 15, 504-507.	2.4	28
100	CSF GABA in depressed patients and normal controls. Psychological Medicine, 1991, 21, 613-618.	4.5	61
101	Detection of Several Novel ?-Aminobutyric Acid-Containing Compounds in Human CSF. Journal of Neurochemistry, 1990, 55, 769-773.	3.9	3
102	Brain amino acid concentrations in rats killed by decapitation and microwave irradiation. Journal of Neuroscience Methods, 1990, 31, 187-192.	2.5	25
103	Continuous monitoring of brain ethanol levels by intracerebral microdialysis. Alcohol, 1990, 7, 129-132.	1.7	53
104	l-Carnitine delays the killing of cultured hepatocytes by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Archives of Biochemistry and Biophysics, 1990, 276, 132-138.	3.0	17
105	Repeated Electroconvulsive Shock Selectively Alters gamma-Aminobutyric Acid Levels in the Rat Brain: Effect of Electrode Placement. Convulsive Therapy, 1990, 6, 199-208.	0.1	9
106	Chronic lithium treatment and status epilepticus induced by lithium and pilocarpine cause selective changes of amino acid concentrations in rat brain regions. Neurochemical Research, 1989, 14, 829-834.	3.3	10
107	Amino acid profiles in long-evans rat superior colliculus, visual cortex, and inferior colliculus. Neurochemical Research, 1989, 14, 465-472.	3.3	13
108	CSF GABA and neuropeptides in pathological gamblers and normal controls. Psychiatry Research, 1989, 30, 137-144.	3.3	31

#	Article	IF	CITATIONS
109	Cerebral metabolism of Parkinsonian primates 21 days after MPTP. Experimental Neurology, 1988, 102, 307-313.	4.1	40
110	Systemic acetyl-L-carnitine elevates nigral levels of glutathione and GABA. Life Sciences, 1988, 43, 289-292.	4.3	56
111	Isoniazid-induced alteration of CSF neurotransmitter amino acids in Huntington's disease. Brain Research, 1987, 408, 125-130.	2.2	15
112	MPTP and convulsive responses in rodents. Brain Research, 1987, 426, 373-376.	2.2	13
113	Free and conjugated amino acids in human CSF: Influence of age and sex. Brain Research, 1985, 338, 53-60.	2.2	104
114	Triple-column ion-exchange physiological amino acid analysis with fluorescent detection: Baseline characterization of human cerebrospinal fluid. Analytical Biochemistry, 1984, 143, 82-94.	2.4	42
115	Single unit responses of substantia nigra pars reticula neurons to apomorphine: Effects of striatal lesions and anesthesia. Brain Research, 1984, 306, 307-318.	2.2	40
116	Further Characterization of In Vitro Conditions Appropriate for GABA Determination in Human CSF: Impact of Acid Deproteinization and Freeze/Thaw. Journal of Neurochemistry, 1983, 41, 1057-1064.	3.9	21