Victor Stalin Raj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258759/publications.pdf

Version: 2024-02-01

72 papers 9,229 citations

71102 41 h-index 71 g-index

76 all docs 76 docs citations

76 times ranked 12226 citing authors

#	Article	IF	CITATIONS
1	The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction. Current Pharmaceutical Biotechnology, 2022, 23, 1118-1129.	1.6	9
2	Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. Journal of Biological Chemistry, 2021, 296, 100025.	3.4	43
3	SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Cells, 2021, 10, 1814.	4.1	31
4	Epigallocatechin-3-gallate (EGCG): a potential molecule for the development of therapeutics against emerging SARS-CoV-1, MERS-CoV and SARS-CoV-2 coronaviruses. Journal of Global Antimicrobial Resistance, 2021, 26, 26-28.	2.2	2
5	Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 2020, 55, 102743.	6.1	304
6	Sensitive and Specific Detection of Low-Level Antibody Responses in Mild Middle East Respiratory Syndrome Coronavirus Infections. Emerging Infectious Diseases, 2019, 25, 1868-1877.	4.3	80
7	Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes and Infections, 2019, 8, 516-530.	6.5	99
8	Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Science Advances, 2018, 4, eaas 9667.	10.3	66
9	Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels. One Health, 2018, 5, 65-68.	3.4	39
10	MERS-coronavirus: From discovery to intervention. One Health, 2017, 3, 11-16.	3.4	43
11	Seroepidemiology of hepatitis B and C virus infections among blood donors in Ethiopia. Journal of Medical Virology, 2017, 89, 1300-1303.	5.0	10
12	Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Current Opinion in Virology, 2017, 23, 49-58.	5 . 4	60
13	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	7.1	272
14	Phenotypic Differences between Asian and African Lineage Zika Viruses in Human Neural Progenitor Cells. MSphere, 2017, 2, .	2.9	83
15	Middle East respiratory syndrome coronavirus experimental transmission using a pig model. Transboundary and Emerging Diseases, 2017, 64, 1342-1345.	3.0	14
16	Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3. Journal of Virology, 2017, 91, .	3.4	24
17	ldentification of HCV Resistant Variants against Direct Acting Antivirals in Plasma and Liver of Treatment NaÃ-ve Patients. Scientific Reports, 2017, 7, 4688.	3.3	17
18	A novel hepatitis B virus subgenotype D10 circulating in Ethiopia. Journal of Viral Hepatitis, 2017, 24, 163-173.	2.0	15

#	Article	IF	Citations
19	Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus. Emerging Infectious Diseases, 2017, 23, 232-240.	4.3	90
20	Genetic diversity of hepatitis C virus in Ethiopia. PLoS ONE, 2017, 12, e0179064.	2.5	14
21	Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015. Emerging Infectious Diseases, 2016, 22, 716-719.	4.3	38
22	MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic. Emerging Infectious Diseases, 2016, 22, 1129-1131.	4.3	67
23	Molecular epidemiology and genetic diversity of hepatitis B virus in Ethiopia. Journal of Medical Virology, 2016, 88, 1035-1043.	5.0	16
24	A poxvirus-based vaccine reduces virus excretion after MERS coronavirus infection in dromedary camels. International Journal of Infectious Diseases, 2016, 45, 421-422.	3.3	0
25	Miscarriage Associated with Zika Virus Infection. New England Journal of Medicine, 2016, 375, 1002-1004.	27.0	142
26	Cross host transmission in the emergence of MERS coronavirus. Current Opinion in Virology, 2016, 16, 55-62.	5.4	75
27	Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels. Journal of Virology, 2016, 90, 4838-4842.	3.4	107
28	An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science, 2016, 351, 77-81.	12.6	216
29	Naturally occurring recombination in ferret coronaviruses revealed by complete genome characterization. Journal of General Virology, 2016, 97, 2180-2186.	2.9	14
30	The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reversetranscription polymerase chain reaction. OIE Revue Scientifique Et Technique, 2016, 35, 905-911.	1.2	9
31	High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014. Infection Ecology and Epidemiology, 2015, 5, 28305.	0.8	68
32	Occupational Exposure to Dromedaries and Risk for MERS-CoV Infection, Qatar, 2013–2014. Emerging Infectious Diseases, 2015, 21, 1422-1425.	4.3	66
33	Reliable typing of MERS-CoV variants with a small genome fragment. Journal of Clinical Virology, 2015, 64, 83-87.	3.1	23
34	Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits. Journal of Virology, 2015, 89, 6131-6135.	3.4	73
35	Identification of Protein Receptors for Coronaviruses by Mass Spectrometry. Methods in Molecular Biology, 2015, 1282, 165-182.	0.9	12
36	Metagenomic Survey for Viruses in Western Arctic Caribou, Alaska, through Iterative Assembly of Taxonomic Units. PLoS ONE, 2014, 9, e105227.	2.5	21

#	Article	IF	CITATIONS
37	Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014. Emerging Infectious Diseases, 2014, 20, 1339-42.	4.3	164
38	Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine, 2014, 32, 5975-5982.	3.8	121
39	MERS: emergence of a novel human coronavirus. Current Opinion in Virology, 2014, 5, 58-62.	5.4	170
40	Updated Phylogenetic Analysis of Arenaviruses Detected in Boid Snakes. Journal of Virology, 2014, 88, 1399-1400.	3.4	15
41	Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infectious Diseases, The, 2014, 14, 140-145.	9.1	571
42	Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2014, 88, 1834-1838.	3.4	141
43	Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. International Journal of Antimicrobial Agents, 2014, 44, 528-532.	2.5	103
44	Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014. Eurosurveillance, 2014, 19, .	7.0	136
45	Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014. Eurosurveillance, 2014, 19, .	7.0	66
46	Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infectious Diseases, The, 2013, 13, 859-866.	9.1	616
47	The Receptor Binding Domain of the New Middle East Respiratory Syndrome Coronavirus Maps to a 231-Residue Region in the Spike Protein That Efficiently Elicits Neutralizing Antibodies. Journal of Virology, 2013, 87, 9379-9383.	3.4	204
48	Spiking the MERS-coronavirus receptor. Cell Research, 2013, 23, 1069-1070.	12.0	23
49	Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13109-13113.	7.1	422
50	Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. Journal of General Virology, 2013, 94, 1206-1210.	2.9	79
51	Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495, 251-254.	27.8	1,731
52	MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-l± treatment. Journal of General Virology, 2013, 94, 1749-1760.	2.9	313
53	Inhibition of Middle East Respiratory Syndrome Coronavirus Infection by Anti-CD26 Monoclonal Antibody. Journal of Virology, 2013, 87, 13892-13899.	3.4	85
54	Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013. Eurosurveillance, 2013, 18, 20662.	7.0	174

#	Article	IF	CITATIONS
55	Identification and Characterization of Two Novel Viruses in Ocular Infections in Reindeer. PLoS ONE, 2013, 8, e69711.	2.5	16
56	Metagenomic Analysis of the Ferret Fecal Viral Flora. PLoS ONE, 2013, 8, e71595.	2.5	70
57	Human Coronavirus EMC Does Not Require the SARS-Coronavirus Receptor and Maintains Broad Replicative Capability in Mammalian Cell Lines. MBio, 2012, 3, .	4.1	180
58	Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. MBio, 2012, 3, .	4.1	766
59	Novel Hepatitis E Virus in Ferrets, the Netherlands. Emerging Infectious Diseases, 2012, 18, 1369-1370.	4.3	158
60	Comparative efficacy of double-stranded RNAs targeting WSSV structural and nonstructural genes in controlling viral multiplication in Penaeus monodon. Archives of Virology, 2012, 157, 993-998.	2.1	25
61	Feeding Cyprinus carpio with infectious materials mediates cyprinid herpesvirus 3 entry through infection of pharyngeal periodontal mucosa. Veterinary Research, 2012, 43, 6.	3.0	31
62	Longitudinal disease studies in small-holder black tiger shrimp (Penaeus monodon) farms in Andhra Pradesh, India. I. High prevalence of WSSV infection and low incidence of disease outbreaks in BMP ponds. Aquaculture, 2011, 318, 277-282.	3.5	8
63	Longitudinal disease studies in small-holder black tiger shrimp (Penaeus monodon) ponds in Andhra Pradesh, India. II. Multiple WSSV genotypes associated with disease outbreaks in ponds seeded with uninfected postlarvae. Aquaculture, 2011, 319, 18-24.	3.5	25
64	Longitudinal disease studies in small-holder black tiger shrimp (Penaeus monodon) farms in Andhra Pradesh, India. III. A complex dynamic of WSSV infection and WSSV genotype distribution in farmed shrimp and wild crustaceans. Aquaculture, 2011, 319, 319-327.	3.5	12
65	Enteric Coronavirus in Ferrets, the Netherlands. Emerging Infectious Diseases, 2011, 17, 1570-1.	4.3	18
66	Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Veterinary Research, 2011, 42, 92.	3.0	107
67	The genome of cyprinid herpesvirus 3 encodes 40 proteins incorporated in mature virions. Journal of General Virology, 2010, 91, 452-462.	2.9	78
68	The Major Portal of Entry of Koi Herpesvirus in <i>Cyprinus carpio</i> Is the Skin. Journal of Virology, 2009, 83, 2819-2830.	3.4	126
69	Involvement of Enterobacter cloacae in the mortality of the fish, Mugil cephalus. Letters in Applied Microbiology, 2008, 46, 667-672.	2.2	36
70	Cloning of the Koi Herpesvirus Genome as an Infectious Bacterial Artificial Chromosome Demonstrates That Disruption of the Thymidine Kinase Locus Induces Partial Attenuation in <i>Cyprinus carpio koi</i> . Journal of Virology, 2008, 82, 4955-4964.	3.4	64
71	Polychaete worms—a vector for white spot syndrome virus (WSSV). Diseases of Aquatic Organisms, 2005, 63, 107-111.	1.0	87
72	Incidence of white muscle disease, a viral like disease associated with mortalities in hatchery-reared postlarvae of the giant freshwater prawn Macrobrachium rosenbergii (De Man) from the south-east coast of India. Aquaculture Research, 2005, 36, 311-316.	1.8	12