George W Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lon Transport in Li-Doped Triethyl(methyl)phosphonium Tetrafluoroborate (Li-[P ₁₂₂₂][BF ₄]) Impregnated with PVDF Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 3839-3852.	3.1	9
2	Frequency Dependent Silica Dissolution Rate Enhancement under Oscillating Pressure via an Electrochemical Pressure Solution-like, Surface Resonance Mechanism. Journal of the American Chemical Society, 2022, 144, 3875-3891.	13.7	1
3	Morphological Evolution and Solid–Electrolyte Interphase Formation on LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathodes Using Highly Concentrated Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 13196-13205.	8.0	9
4	Novel Boundary Lubrication Mechanisms from Molecular Pillows of Lubricin Brush-Coated Graphene Oxide Nanosheets. Langmuir, 2022, 38, 5351-5360.	3.5	2
5	Lubricin as a tool for controlling adhesion <i>in vivo</i> and <i>ex vivo</i> . Biointerphases, 2021, 16, 020802.	1.6	7
6	Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications. ACS Sensors, 2021, 6, 1482-1507.	7.8	113
7	Phase behavior and electrochemical properties of solid lithium electrolytes based on N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide and PVdF composites. Solid State Ionics, 2021, 363, 115588.	2.7	7
8	Cellular Interactions with Lubricin and Hyaluronic Acid–Lubricin Composite Coatings on Gold Electrodes in Passive and Electrically Stimulated Environments. ACS Biomaterials Science and Engineering, 2021, 7, 3696-3708.	5.2	5
9	Potential Pulse-Facilitated Active Adsorption of Lubricin Polymer Brushes Can Both Accelerate Self-Assembly and Control Grafting Density. Langmuir, 2021, 37, 11188-11193.	3.5	2
10	Anion effects on the properties of OIPC/PVDF composites. Materials Advances, 2021, 2, 1683-1694.	5.4	17
11	Lubricin (PRG4) reduces fouling susceptibility and improves sensitivity of carbon-based electrodes. Electrochimica Acta, 2020, 333, 135574.	5.2	19
12	Self-Assembly of Lubricin (PRG-4) Brushes on Graphene Oxide Affords Stable 2D-Nanosheets in Concentrated Electrolytes and Complex Fluids. ACS Applied Nano Materials, 2020, 3, 11527-11542.	5.0	9
13	The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes. Journal of Materials Chemistry A, 2020, 8, 5350-5362.	10.3	26
14	A Simple Electrochemical Swab Assay for the Rapid Quantification of Clonazepam in Unprocessed Saliva Enabled by Lubricin Antifouling Coatings. ChemElectroChem, 2020, 7, 2851-2858.	3.4	22
15	Lubricin (PRG4) Antiadhesive Coatings Mitigate Electrochemical Impedance Instabilities in Polypyrrole Bionic Electrodes Exposed to Fouling Fluids. ACS Applied Bio Materials, 2020, 3, 8032-8039.	4.6	8
16	Adhesion and Self-Assembly of Lubricin (PRG4) Brush Layers on Different Substrate Surfaces. Langmuir, 2019, 35, 15834-15848.	3.5	19
17	Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity. Langmuir, 2019, 35, 14522-14531.	3.5	19
18	Dataset on the synthesis and physicochemical characterization of blank and curcumin encapsulated sericin nanoparticles obtained from Philosamia ricini silkworm cocoons. Data in Brief, 2019, 26, 104359.	1.0	5

GEORGE W GREENE

#	Article	IF	CITATIONS
19	Prospects and application of nanobiotechnology in food preservation: molecular perspectives. Critical Reviews in Biotechnology, 2019, 39, 759-778.	9.0	18
20	Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS Applied Materials & Interfaces, 2019, 11, 18090-18102.	8.0	33
21	Lubricin on Platinum Electrodes: A Lowâ€Impedance Proteinâ€Resistant Surface Towards Biomedical Implantation. ChemElectroChem, 2019, 6, 1939-1943.	3.4	22
22	Lubricin Antiadhesive Coatings Exhibit Sizeâ€selective Transport Properties that Inhibit Biofouling of Electrode Surfaces with Minimal Loss in Electrochemical Activity. Advanced Materials Interfaces, 2018, 5, 1701296.	3.7	31
23	Anti-Adhesive Coatings: Lubricin Antiadhesive Coatings Exhibit Size-Selective Transport Properties that Inhibit Biofouling of Electrode Surfaces with Minimal Loss in Electrochemical Activity (Adv. Mater.) Tj ETQq1 1 ().78 43 14 rg	gBT2/Overlock
24	Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries. Energy Storage Materials, 2018, 15, 407-414.	18.0	45
25	(Keynote) Solid State Organic Ionic Plastic Crystals and Composite Materials for Energy Storage. ECS Meeting Abstracts, 2018, , .	0.0	0
26	Structure and Property Changes in Self-Assembled Lubricin Layers Induced by Calcium Ion Interactions. Langmuir, 2017, 33, 2559-2570.	3.5	38
27	Organic Ionic Plastic Crystalâ€Based Composite Electrolyte with Surface Enhanced Ion Transport and Its Use in Allâ€Solidâ€State Lithium Batteries. Advanced Materials Technologies, 2017, 2, 1700046.	5.8	49
28	Solid‧tate Lithium Conductors for Lithium Metal Batteries Based on Electrospun Nanofiber/Plastic Crystal Composites. ChemSusChem, 2017, 10, 3135-3145.	6.8	58
29	N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: characterization and lithium cell studies. Physical Chemistry Chemical Physics, 2017, 19, 2225-2234.	2.8	61
30	Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Journal of Colloid and Interface Science, 2016, 478, 316-323.	9.4	33
31	Dip-and-Drag Lateral Force Spectroscopy for Measuring Adhesive Forces between Nanofibers. Langmuir, 2016, 32, 13340-13348.	3.5	5
32	Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy Harvesting. ACS Energy Letters, 2016, 1, 654-658.	17.4	91
33	Use of optical interferometry to measure gold nanoparticle adsorption on silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 383-392.	4.7	2
34	Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning. Journal of Materials Chemistry A, 2016, 4, 9873-9880.	10.3	49
35	Electrokinetic Properties of Lubricin Antiadhesive Coatings in Microfluidic Systems. Langmuir, 2016, 32, 1899-1908.	3.5	21
36	Mercury Vapor Sorption and Amalgamation with a Thin Gold Film. ACS Applied Materials & Interfaces, 2015, 7, 23172-23181.	8.0	27

GEORGE W GREENE

#	Article	IF	CITATIONS
37	Lubricin: A versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials, 2015, 53, 127-136.	11.4	81
38	Enhanced ionic mobility in Organic Ionic Plastic Crystal – Dendrimer solid electrolytes. Electrochimica Acta, 2015, 175, 214-223.	5.2	20
39	A cartilage-inspired lubrication system. Soft Matter, 2014, 10, 374-382.	2.7	33
40	Dynamics of force generation by confined actin filaments. Soft Matter, 2013, 9, 2389.	2.7	6
41	Synergistic Interactions between Grafted Hyaluronic Acid and Lubricin Provide Enhanced Wear Protection and Lubrication. Biomacromolecules, 2013, 14, 1669-1677.	5.4	133
42	Hyaluronic acid–collagen network interactions during the dynamic compression and recovery of cartilage. Soft Matter, 2012, 8, 9906.	2.7	14
43	The Electrochemical Surface Forces Apparatus: The Effect of Surface Roughness, Electrostatic Surface Potentials, and Anodic Oxide Growth on Interaction Forces, and Friction between Dissimilar Surfaces in Aqueous Solutions. Langmuir, 2012, 28, 13080-13093.	3.5	108
44	The Boundary Lubrication of Chemically Grafted and Cross-Linked Hyaluronic Acid in Phosphate Buffered Saline and Lipid Solutions Measured by the Surface Forces Apparatus. Langmuir, 2012, 28, 2244-2250.	3.5	75
45	Pressure solution – The importance of the electrochemical surface potentials. Geochimica Et Cosmochimica Acta, 2011, 75, 6882-6892.	3.9	75
46	Effect of Surface Roughness and Electrostatic Surface Potentials on Forces Between Dissimilar Surfaces in Aqueous Solution. Advanced Materials, 2011, 23, 2294-2299.	21.0	61
47	Reply to McCutchen: Clarification of hydrodynamic and boundary lubrication mechanisms in joints. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E462-E462.	7.1	2
48	Adaptive mechanically controlled lubrication mechanism found in articular joints. Proceedings of the United States of America, 2011, 108, 5255-5259.	7.1	200
49	Anisotropic dynamic changes in the pore network structure, fluid diffusion and fluid flow in articular cartilage under compression. Biomaterials, 2010, 31, 3117-3128.	11.4	40
50	Recent advances in the surface forces apparatus (SFA) technique. Reports on Progress in Physics, 2010, 73, 036601.	20.1	459
51	Force amplification response of actin filaments under confined compression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 445-449.	7.1	26
52	Role of electrochemical reactions in pressure solution. Geochimica Et Cosmochimica Acta, 2009, 73, 2862-2874.	3.9	63
53	Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication. Biomaterials, 2008, 29, 4455-4462.	11.4	44
54	Molecular Aspects of Boundary Lubrication by Human Lubricin:  Effect of Disulfide Bonds and Enzymatic Digestion. Langmuir, 2008, 24, 1495-1508.	3.5	120

GEORGE W GREENE

#	Article	IF	CITATIONS
55	Adsorption, Lubrication, and Wear of Lubricin on Model Surfaces: Polymer Brush-Like Behavior of a Glycoprotein. Biophysical Journal, 2007, 92, 1693-1708.	0.5	273
56	Experimental investigation of the dissolution of quartz by a muscovite mica surface: Implications for pressure solution. Journal of Geophysical Research, 2006, 111, .	3.3	33
57	Confined fluids and their role in pressure solution. Chemical Geology, 2006, 230, 220-231.	3.3	33
58	Protein binding properties of surface-modified porous polyethylene membranes. Biomaterials, 2005, 26, 5972-5982.	11.4	28
59	Chemical and Thermal Stability of Surfaceâ€Modified Porous Polyethylene Membranes. Journal of Dispersion Science and Technology, 2005, 25, 609-617.	2.4	1
60	Adsorbtion of polyelectrolyte multilayers on plasma-modified porous polyethylene. Applied Surface Science, 2004, 238, 101-107.	6.1	8
61	Adsorption of polyelectrolyte multilayers on plasma-modified porous polyethylene. Applied Surface Science, 2004, 233, 336-342.	6.1	9
62	Deposition and Wetting Characteristics of Polyelectrolyte Multilayers on Plasma-Modified Porous Polyethylene. Langmuir, 2004, 20, 2739-2745.	3.5	22
63	Wetting Characteristics of Plasma-Modified Porous Polyethylene. Langmuir, 2003, 19, 5869-5874.	3.5	34