Marta E G Mosquera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257539/publications.pdf

Version: 2024-02-01

279798 361022 2,024 126 23 35 citations g-index h-index papers 132 132 132 1897 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rheology of Poly(glycidyl methacrylate) Macromolecular Nano Assemblies. Polymers, 2022, 14, 455.	4.5	3
2	Polymeric ruthenium precursor as a photoactivated antimicrobial agent. Journal of Hazardous Materials, 2021, 402, 123788.	12.4	11
3	Polymerization of terpenes and terpenoids using metal catalysts. Advances in Organometallic Chemistry, 2021, , 55-93.	1.0	5
4	Reversible dehydration–hydration process in stable bismuth-based hybrid perovskites. Journal of Materials Chemistry C, 2021, 9, 11358-11367.	5.5	12
5	Conjugated polymer nanostructures displaying highly photoactivated antimicrobial and antibiofilm functionalities. Journal of Materials Chemistry B, 2021, 9, 4390-4399.	5.8	11
6	Poly(glycidyl methacrylate) macromolecular assemblies as biocompatible nanocarrier for the antimicrobial lysozyme. International Journal of Pharmaceutics, 2021, 603, 120695.	5.2	5
7	Terpenes and Terpenoids: Building Blocks to Produce Biopolymers. Sustainable Chemistry, 2021, 2, 467-492.	4.7	28
8	Catalytic Formation of Cyclic Carbonates using Gallium Aminotrisphenolate Compounds and Comparison to their Aluminium Congeners: A Combined Experimental and Computational Study. ChemCatChem, 2021, 13, 4099-4110.	3.7	14
9	Stereospecific Synthesis of Chiral Titanium Complexes Bearing a Bifunctionalized Cyclopentadienyl-Terpenoid Ligand Derived from α-Pinene. Organometallics, 2021, 40, 3076-3086.	2.3	1
10	NHC-CDI Betaine Adducts and Their Cationic Derivatives as Catalyst Precursors for Dichloromethane Valorization. Journal of Organic Chemistry, 2021, 86, 16725-16735.	3.2	4
11	Halogen bonding (HaB) in E–lâ< X–M systems: influence of the halogen donor on the HaB nature. CrystEngComm, 2020, 22, 870-877.	2.6	9
12	Cyclopentadienyl-silsesquioxane titanium compounds as suitable candidates for immobilization on silica-based supports. Inorganica Chimica Acta, 2020, 501, 119275.	2.4	6
13	Bio-based polyether from limonene oxide catalytic ROP as green polymeric plasticizer for PLA. Polymer, 2020, 210, 123003.	3.8	27
14	Conducting Polymer-Based Nanohybrids for Fuel Cell Application. Polymers, 2020, 12, 2993.	4.5	40
15	Alkali-Metal Compounds with Bio-Based Ligands as Catalysts for Isoselective Lactide Polymerization: Influence of the Catalyst Aggregation on the Polymerization Control. Organometallics, 2020, 39, 2278-2286.	2.3	16
16	MMA Polymerization with Group 4 Alkylâ€Free 14â€Electron d 0 Species. European Journal of Inorganic Chemistry, 2020, 2020, 1589-1595.	2.0	3
17	Ring-Opening Polymerization (ROP) of cyclic esters by a versatile aluminum Diphenoxyimine Complex: From polylactide to random copolymers. European Polymer Journal, 2020, 125, 109527.	5.4	23
18	Fluorinated alkali metal catalysts for the Ring-Opening Polymerization (ROP) of rac-lactide. Effect of the M···F interactions in the polymerization control. Journal of Organometallic Chemistry, 2019, 898, 120854.	1.8	3

#	Article	IF	Citations
19	Inorganic chemistry of the p-block elements. Dalton Transactions, 2019, 48, 6666-6668.	3.3	1
20	Heterobimetallic aluminate derivatives with bulky phenoxide ligands: a catalyst for selective vinyl polymerization. Dalton Transactions, 2019, 48, 6435-6444.	3.3	11
21	Intramolecular C–F Activation in Schiff-Base Alkali Metal Complexes. Organometallics, 2019, 38, 894-904.	2.3	13
22	Biodegradable PHB from <i>rac-</i> \hat{l}^2 -Butyrolactone: Highly Controlled ROP Mediated by a Pentacoordinated Aluminum Complex. Organometallics, 2018, 37, 837-840.	2.3	37
23	A Nonlinear Optically Active Bismuth–Camphorate Coordination Polymer. European Journal of Inorganic Chemistry, 2018, 2018, 2437-2443.	2.0	12
24	Schiff-base - <i>ate</i> derivatives with main group metals: generation of a tripodal aluminate metalloligand. Dalton Transactions, 2018, 47, 6499-6506.	3.3	8
25	Aluminum Aryloxide Compounds as Very Active Catalysts for Glycidyl Methacrylate Selective Ringâ€Opening Polymerization. ChemCatChem, 2018, 10, 936-939.	3.7	15
26	Interaction of an imidazolium-2-amidinate (NHC-CDI) zwitterion with zinc dichloride in dichloromethane: role as ligands and C–Cl activation promoters. Chemical Communications, 2018, 54, 12586-12589.	4.1	11
27	Aluminates with Fluorinated Schiff Bases: Influence of the Alkali Metal–Fluorine Interactions in Structure Stabilization. Molecules, 2018, 23, 3108.	3.8	3
28	Chiral Titanium(IV) Complexes Containing Polydentate Ligands Based on \hat{l}_{\pm} -Pinene. Catalytic Activity in Sulfoxidation with Hydrogen Peroxide. Organometallics, 2018, 37, 3437-3449.	2.3	9
29	Aluminum Alkali Metalate Derivatives: Factors Driving the Final Nuclearity in the Crystal Form. European Journal of Inorganic Chemistry, 2017, 2017, 1994-2001.	2.0	3
30	Suitable Approach to Prepare N-Substituted Niobium Complexes - Study of the Factors Controlling the Process. European Journal of Inorganic Chemistry, 2017, 2017, 1060-1066.	2.0	2
31	Comparison of halogen bonding networks with Ru(<scp>ii</scp>) complexes and analysis of the influence of the XB interactions on their reactivity. Faraday Discussions, 2017, 203, 257-283.	3.2	19
32	The halogen bond in solution: general discussion. Faraday Discussions, 2017, 203, 347-370.	3.2	5
33	Nondissociative Mechanism for the Inversion of the Configuration in Cyclopentadienyl Di(aryloxo)titanium Complexes: An Entropy Discussion. Organometallics, 2017, 36, 3904-3911.	2.3	7
34	An Antibacterial Zn–MOF with Hydrazinebenzoate Linkers. European Journal of Inorganic Chemistry, 2017, 2017, 574-580.	2.0	70
35	Intriguing I ₂ Reduction in the Iodide for Chloride Ligand Substitution at a Ru(II) Complex: Role of Mixed Trihalides in the Redox Mechanism. Inorganic Chemistry, 2016, 55, 283-291.	4.0	25
36	Formation of a unique â€unsupported' hydridic stannate(<scp>ii</scp>). Chemical Communications, 2016, 52, 5993-5996.	4.1	10

#	Article	IF	CITATIONS
37	Synthesis of novel chiral heterometallic terpene oximates: unusual generation of an aluminium enolate by a cooperative effect. Dalton Transactions, 2016, 45, 10514-10518.	3.3	10
38	Novel enantiopure cyclopentadienyl Ti(IV) oximato compounds as potential anticancer agents. Journal of Inorganic Biochemistry, 2016, 156, 22-34.	3.5	13
39	Implication of halogen bonding in ligand substitution reactions: solid-state studies. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s121-s122.	0.1	O
40	Comparative Study of Lactide Polymerization with Lithium, Sodium, Potassium, Magnesium, Calcium, and Zinc AzoÂnaphthoxide Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 5124-5132.	2.0	24
41	Metal and Ligand-Substituent Effects in the Immortal Polymerization of <i>rac</i> -Lactide with Li, Na, and K Phenoxo-imine Complexes. Organometallics, 2015, 34, 477-487.	2.3	98
42	Imido-pyridine Ti(<scp>iv</scp>) compounds: synthesis of unusual imido–amido heterobimetallic derivatives. Dalton Transactions, 2015, 44, 11119-11128.	3.3	4
43	Functionalized aminocarboxylate moieties as linkers for coordination polymers: influence of the substituents in the dimensionality of the final structure. CrystEngComm, 2014, 16, 3376-3386.	2.6	10
44	Heterometallic aluminates: alkali metals trapped by an aluminium aryloxide claw. Dalton Transactions, 2014, 43, 14377-14385.	3.3	19
45	Evaluation of an education and training intervention to reduce health care waste in a tertiary hospital in Spain. American Journal of Infection Control, 2014, 42, 894-897.	2.3	49
46	Synthesis and Structure of Homo- and Heterometallic Lithium–Magnesium Complexes and Their Reactivity in the ROP of <i>rac</i> -Lactide. Organometallics, 2013, 32, 6624-6627.	2.3	41
47	Aminoarenethiolate Aluminum Complexes: Synthesis, Characterization, and Use in l-Lactide Polymerization. Organometallics, 2013, 32, 2618-2624.	2.3	29
48	Remote Aryl Cyanation via Isocyanide–Cyanide Rearrangement on Tosylmethyl Isocyanide Derivatives. Organic Letters, 2013, 15, 3388-3391.	4.6	20
49	Functionalized imido-bridged Ti(iv) complexes as new building blocks for supramolecular arrangements: generation of a 1D structure through a Mg–Clâ√l–C halogen bonding interaction. Dalton Transactions, 2013, 42, 7074.	3.3	19
50	A cascade reaction of azolopyrimidines. Synthesis of unusual indole and azaindole derivatives. Chemical Communications, 2012, 48, 9171.	4.1	12
51	1,3-Double Siloxo-Bridged Zirconium Metallocene for Propene and 1-Hexene Regioselective Oligomerization. Organometallics, 2012, 31, 2108-2111.	2.3	13
52	Olefin Epoxidation Catalyzed by <i>cis</i> â€Dioxdomolybdenum(VI) Complexes Containing Chiral Alkoxoâ€Imino Ligands Derived from (+)â€Î±â€Pinene. European Journal of Inorganic Chemistry, 2012, 2012, 2940-2949.	2.0	18
53	Effect of the Nitrogen Substituent on the Reactions of Alane towards Imino―and Aminophenols: Generation of a Dinuclear Aluminoxane. European Journal of Inorganic Chemistry, 2012, 2012, 3611-3617.	2.0	3
54	Cyclopentadienyl–Silsesquioxane Titanium Complexes: Highly Active Catalysts for Epoxidation of Alkenes with Aqueous Hydrogen Peroxide. Inorganic Chemistry, 2012, 51, 6345-6349.	4.0	25

#	Article	IF	Citations
55	Lewis acid fragmentation of a lithium aryloxide cage: generation of new heterometallic aluminium–lithium species. Chemical Communications, 2011, 47, 11757.	4.1	21
56	Reactions of $[Ti(\hat{l}\cdot sup>5 < sub>5 < sub>5 < sub>6 < sub>4 < sub>5 iMe < sub>2 < sub>6 < sub>3 < sub>9 < sub > 3 < sub > 9 <$	2.3	9
57	Synthesis and structural characterization of novel tetranuclear organotitanoxane derivatives. Dalton Transactions, 2011, 40, 5728.	3.3	8
58	Studies on the active species in olefin polymerisation generated from phenoxo-amido titanium "chiral-at-metal―compounds. Journal of Organometallic Chemistry, 2011, 696, 2330-2337.	1.8	5
59	An Unusual Nâ€Bridged (Amido)(hydrido)(phenoxido)aluminium Dinuclear Compound – The Role of Nitrogen Substituents in Determining Nuclearity: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2010, 2010, 1522-1529.	2.0	14
60	Trapping Unstable Terminal Mâ^'O Multiple Bonds of Monocyclopentadienyl Niobium and Tantalum Complexes with Lewis Acids. Inorganic Chemistry, 2010, 49, 10642-10648.	4.0	11
61	Synthesis and Structural Characterization of a Novel Aluminum Amidato Derivative Exhibiting a Rare 16-Membered Wheel Containing Four Aluminum Centers. Organometallics, 2010, 29, 3642-3646.	2.3	11
62	Cyclopentadienyl and Alkynyl Copper(I) Derivatives with the $ [\{Ti(\hat{l}\cdot \langle sup>5 (\hat{l}/4 < sub>3 (\hat{l}/4 < sub>3 N)] Metalloliganometallics, 2010, 29, 6732-6738. $	nd2.3	19
63	Regioselective Synthesis of 1,2- and 1,3-Di(silylamido)cyclopentadienyl Zirconium Complexes. Organometallics, 2010, 29, 263-268.	2.3	5
64	Dinuclear Dicyclopentadienyl Titanium Complexes with Bridging Cyclopentadienylsiloxo Ligands. Organometallics, 2010, 29, 642-655.	2.3	6
65	Lewis Base Behavior of Bridging Nitrido Ligands of Titanium Polynuclear Complexes. Chemistry - A European Journal, 2009, 15, 11619-11631.	3.3	13
66	Early transition metal derivatives stabilised by the phenylenediamido 1,2-C6H4(NCH2tBu)2 ligand: Synthesis, characterisation and reactivity studies: Crystal structures of [Ta{1,2-C6H4(NCH2tBu)2}2Cl]		

#	Article	IF	CITATIONS
73	Organotitanoxanes with Unique Structure among Transition-Element Organometallic Oxide Derivatives. Inorganic Chemistry, 2008, 47, 3940-3942.	4.0	11
74	Mercury or silver atoms bridging trinuclear titanium imido–nitrido systems. Chemical Communications, 2008, , 6561.	4.1	11
75	Olefin isomerisation versus hydrozirconation: a case of a stable \hat{l}^2 -hydrogen-containing Zr-alkyl derivative. Dalton Transactions, 2008, , 2670.	3.3	10
76	Isolobal Zwitterionic Niobium and Tantalum Imido and Zirconium Monocyclopentadienyl Complexes: Theoretical and Methyl Methacrylate Polymerization Studies. Organometallics, 2008, 27, 1417-1426.	2.3	22
77	Cyclopentadienyl-Silyl-Amido versus Imido Niobium Complexes. The Role of Additional Amine Functionalities: A Combined Experimental and Theoretical Study. Organometallics, 2008, 27, 839-849.	2.3	13
78	Controlled Synthesis of Novel Aryloxide Polynuclear Aluminum Species. Study of Their Catalytic Properties in Polymerization Processes. Organometallics, 2008, 27, 2300-2305.	2.3	28
79	D+â^'Ï€â^'Aâ^' Charge-Transfer Molecules Based on Tricyanoquinodimethane and Diphosphine Metal Complexes. Inorganic Chemistry, 2008, 47, 5540-5542.	4.0	4
80	Synthesis of N-Heterocyclic Carbene Complexes of Manganese(I) by Coupling Isocyanide Ligands with Propargylamines and Propargylic Alcohols§. Organometallics, 2007, 26, 5687-5695.	2.3	77
81	Metalâ^`Nitrogen Bonds. X-ray Molecular Śtructure of [Nb(C ₅ H ₄ SiMe ₃){NH(CH ₂) ₂ -î-NH ₂ and the Novel Tetranuclear Niobium Oxo Derivative [{Nb(C ₅ H ₄ SiMe ₃)Cl(î¼ ₂ -0)} ₄ (Cl) _{2<td>2.0</td><td>10</td>}	2.0	10
82	Organometallics, 2007, 26, 4243-4251. Allyl Isomerization Mediated by Cyclopentadienyl Group 6 Metal Compounds. Organometallics, 2007, 26, 3831-3839.	2.3	14
83	Reactions of Sn(NMe2)2 with MPHCy: The Effects of Alkali Metal Phosphide Coupling (Cy=Cyclohexyl;) Tj ETQq1 1	. <u>9.</u> 784314	4.rgBT/Ove
84	Syntheses and structures of the heterometallic complexes [{MeIn(μ-PCy)}2(μ-PCy)]2(Li·Et2O)4, [Me2In(PhMes)2]â" [Li(TMEDA)2]+ and [Me2(PHMes)2In]â" [K(PMDETA)2]+ [Cy=cyclohexyl, Mes=2,4,6-Me3C6H2, TMEDA=(Me2NCH2)2, PMDETA=(Me2NCH2CH2)2NMe]. Inorganica Chimica Acta, 2007, 360, 1266-1273.	2.4	3
85	Bis (3,5-dimethylpyrazol-1-ato) zirconium complexes as precursors for ethylene polymerisation upon activation with MAO: Syntheses, characterisation and X-ray molecular structure of $[Zr(\hat{i}\cdot2-3,5-Me2Pz)2Cl2(\hat{i}\cdot1-3,5-Me2PzH)2]\hat{A}\cdot(3,5-Me2PzH)$ and $[Zr(\hat{i}\cdot2-3,5-Me2Pz)2(CH2Ph)2]$ (3.5-Me2Pz=3.5-dimethylpyrazol-1-ato). Polyhedron, 2007, 26, 5339-5348.	2.2	14
86	Synthesis of the Cation Complex [TaCp*Me3]+ and a Comparison of Its Reactivity with That of [TaCp*Me4]. Organometallics, 2006, 25, 2331-2336.	2.3	15
87	High Structural Control in Metal-Mediated Synthesis of New Functionalized Diphosphines Using Diphosphinoketenimines as Precursors. Chemistry - A European Journal, 2006, 12, 7706-7716.	3.3	6
88	Evidence of Fluoride Transfer from the Anion of $[Zr\{C5H3[SiMe2(\hat{i}-1-NtBu)]2\}]+[RB(C6F5)3]\hat{a}^2$ Complexes to the Zirconocenium Cation. Angewandte Chemie - International Edition, 2006, 45, 7572-7574.	13.8	11
89	Î-2-Iminoacyl and Î-2-Acyl Monocyclopentadienyl Tantalum Complexes Bearing Oxo and Oxo-Borane Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 127-132.	2.0	23
90	Aryl-imido niobium complexes with chloro-silyl and aryl-Î-amidosilyl cyclopentadienyl ligands: X-ray structure of the constrained-geometry compound [Nb(Î-5-C5H4SiMe2-Î-1-NAr)(NAr)Cl] (Ar=2,6-Me2C6H3). Polyhedron, 2005, 24, 1274-1279.	2.2	15

#	Article	IF	CITATIONS
91	Imidazoline-Functionalized Diphosphines: Models for N-Heterocyclic Carbene-Diphosphinocarbene Coupling. Angewandte Chemie - International Edition, 2005, 44, 102-105.	13.8	19
92	Carbon Dioxide Activation Assisted by a Bis(chlorodimethylsilyl)cyclopentadienyl Titanium Compound. Angewandte Chemie - International Edition, 2005, 44, 5828-5830.	13.8	18
93	Imidazoline-Functionalized Diphosphines: Models for N-Heterocyclic Carbene-Diphosphinocarbene Coupling. Angewandte Chemie, 2005, 117, 104-107.	2.0	3
94	Cyclopentadienyl-Silyl-Amido Niobium Complexes Prepared by a Transmetalation Reaction Using Ti{η5-C5H4SiMe2-η-N(CH2)2NRRâ€~}Cl2â€. Organometallics, 2005, 24, 5853-5857.	2.3	11
95	Insertion Reactions into the Metalâ^'Alkyl and Metalâ^'Amido Bonds of 1,3-Di(silyl-Î-amido)cyclopentadienyl Titanium and Zirconium Complexes. Organometallics, 2005, 24, 2424-2432.	2.3	37
96	Generation of N-Heterocyclic Carbenes by Metal-Mediated Coupling of Propargylamine and Isocyanides. Journal of the American Chemical Society, 2005, 127, 8584-8585.	13.7	68
97	Group 4 metallocene complexes with non-bridged and tetramethyldisiloxane-bridged methyl-phenyl-cyclopentadienyl ligands: synthesis, characterization and olefin polymerization studies. Journal of Organometallic Chemistry, 2004, 689, 4395-4406.	1.8	2
98	Molybdenum Amido Complexes with Single MoN Bonds: Synthesis, Structure, and Reactivity. Chemistry - A European Journal, 2003, 9, 4132-4143.	3.3	22
99	Trapping Highly Electrophilic Metalladiphosphanylcarbenes. Angewandte Chemie - International Edition, 2003, 42, 4767-4771.	13.8	32
100	Synthesis and structure of [$\{Sn(\hat{l}/4\hat{a}\in PCy)\}3(Na\hat{A}\cdot PMDETA)2$], containing an electron-deficient [$\{Sn(\hat{l}/4\hat{a}\in PCy)\}3$]2 \hat{a} dianion. Chemical Communications, 2003, , 1288-1289.	4.1	18
101	Applications of manganocene in the synthesis of Mn(ii) amide and imide cages. Dalton Transactions, 2003, , 3002.	3.3	27
102	Nucleophilic addition to a Sn(ii) imido cubane, [SnNR]4; a new route to heteroleptic stannates. Dalton Transactions RSC, 2002, , 3525-3528.	2.3	3
103	Syntheses and magnetic properties of hexanuclear [Cp2Mn3(L1)4]2and octanuclear [Mn8(L2)12(\hat{l} /44-O)2] (L1= 2-HNC5H5N, L2= 2-NH-3-Br-5-MeC5H3N, Cp = C5H5). Chemical Communications, 2002, , 2980-2981.	4.1	33
104	Effects of meta-substitution on aggregation in the cubanes [SnNR]4 {R = $[2-Me-5-MeOC6H3]$, $[2,5-(MeO)2C6H3]$ and $[3,5-(MeO)2C6H3]$ }. Dalton Transactions RSC, 2002, , 1046-1050.	2.3	4
105	Synthesis and structure of [Sn9(Ndmp)7(HNdmp)2O2], containing a bidentate double-cubane oxo		

#	Article	IF	CITATIONS
109	Stabilisation of unusual metal co-ordination geometries using an oxo-cubane ligand; syntheses and structures of [{Sn4(NtBu)3O}3LiCl]·3thf and [{Sn4(NtBu)3O}3FeCl2]·3thf. Dalton Transactions RSC, 2000, , 487-490.	2.3	1
110	Complexes of Ruthenium(II) with Unsymmetrical Diphosphines and Diphosphinomethanides. A Way to Synthesize Chiral Metallodiphosphines. Organometallics, 2000, 19, 5533-5536.	2.3	5
111	A synthetic and structural study of the formation of cyclic [(RP)nE]â^ anions and Zintl compounds using E(NMe2)3 (Eâ€=â€As, Sb). Dalton Transactions RSC, 2000, , 479-486.	2.3	36
112	A leaving group strategy for the selective functionalisation of an imido $Sn(II)$ cubane. Journal of the Chemical Society Dalton Transactions, 1999, , 1043-1044.	1.1	0
113	The hydrogen bonded polymer structures of [{Mn(2-mbiH)2·TMEDA}·A–A]â^ž [2-mbiH2 = 2-mercaptobenzimidazole; A–A = TMEDA (Me2NCH2CH2NMe2) or DABCO (N{CH2CH2}3N)]. New Journal of Chemistry, 1999, 23, 1033-1039.	2.8	7
114	Structural Control in the Formation of Multidecker Sandwich Anions of Plumbocene:Â The Effects of Encapsulating the Alkali Metal Counterions. Organometallics, 1999, 18, 1148-1153.	2.3	25
115	Heterometallic Complexes of Sn(II). Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 150, 107-116.	1.6	0
116			