
Geoffrey S Pitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8256447/publications.pdf Version: 2024-02-01

CEOFEDEV S DITT

#	Article	IF	CITATIONS
1	Detecting Cardiovascular Protein-Protein Interactions by Proximity Proteomics. Circulation Research, 2022, 130, 273-287.	4.5	11
2	Increased Ca2+ influx through CaV1.2 drives aortic valve calcification. JCI Insight, 2022, 7, .	5.0	10
3	Proteolytic regulation of calcium channels - avoiding controversy Faculty Reviews, 2022, 11, 5.	3.9	0
4	SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circulation Research, 2022, 130, 963-977.	4.5	49
5	A dual SHOX2:CFP; MYH6:mCherry knockin hESC reporter line for derivation of human SAN-like cells. IScience, 2022, 25, 104153.	4.1	1
6	Adrenergic Ca _V 1.2 Activation via Rad Phosphorylation Converges at α _{1C} I-II Loop. Circulation Research, 2021, 128, 76-88.	4.5	39
7	Voltage-Gated Calcium Channels in Nonexcitable Tissues. Annual Review of Physiology, 2021, 83, 183-203.	13.1	38
8	A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nature Communications, 2021, 12, 463.	12.8	109
9	Scn2a severe hypomorphic mutation decreases excitatory synaptic input and causes autism-associated behaviors. JCI Insight, 2021, 6, .	5.0	9
10	Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations. Genetics in Medicine, 2021, 23, 1922-1932.	2.4	16
11	Cardiac phenotype in <i>ATP1A3</i> -related syndromes. Neurology, 2020, 95, e2866-e2879.	1.1	19
12	Calmodulin binds to the N-terminal domain of the cardiac sodium channel Na _v 1.5. Channels, 2020, 14, 268-286.	2.8	23
13	Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature, 2020, 577, 695-700.	27.8	163
14	An interaction between the III-IV linker and CTD in NaV1.5 confers regulation of inactivation by CaM and FHF. Journal of General Physiology, 2020, 152, .	1.9	20
15	Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding–deficient channels. JCI Insight, 2020, 5, .	5.0	16
16	Knockout of the Xâ€linked <i>Fgf13</i> in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity. FASEB Journal, 2019, 33, 11579-11594.	0.5	9
17	The CaV1.2 L-type calcium channel regulates bone homeostasis in the middle and inner ear. Bone, 2019, 125, 160-168.	2.9	19
18	Ca2+/CaM interaction with voltage-gated Na+channels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26150-26151.	7.1	1

#	Article	IF	CITATIONS
19	Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking. Journal of Clinical Investigation, 2019, 129, 647-658.	8.2	49
20	Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends in Neurosciences, 2018, 41, 442-456.	8.6	210
21	Fibroblast Growth Factor Homologous Factors Modulate Cardiac Sodium and Calcium Channels. , 2018, , 177-179.		ο
22	An update on the journey towards precision medicine in cardiology. European Heart Journal, 2018, 39, 3627-3628.	2.2	1
23	The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. Journal of Clinical Investigation, 2018, 128, 4843-4855.	8.2	62
24	Conditional knockout of Fgf13 in murine hearts increases arrhythmia susceptibility and reveals novel ion channel modulatory roles. Journal of Molecular and Cellular Cardiology, 2017, 104, 63-74.	1.9	39
25	Calmodulin limits pathogenic Na+ channel persistent current. Journal of General Physiology, 2017, 149, 277-293.	1.9	50
26	Inducible <i>Fgf13</i> ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4010-E4019.	7.1	22
27	Divide, multitask, and conquer: Coordination in channel regulation. Channels, 2017, 11, 268-270.	2.8	Ο
28	FGF14 is a regulator of KCNQ2/3 channels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 154-159.	7.1	35
29	Proteolytic cleavage and PKA phosphorylation of α _{1C} subunit are not required for adrenergic regulation of Ca _V 1.2 in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9194-9199.	7.1	40
30	Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency–induced bone loss. JCI Insight, 2017, 2, .	5.0	38
31	A view from the side-line. European Heart Journal, 2016, 37, 3488-3489.	2.2	Ο
32	Current view on regulation of voltageâ€gated sodium channels by calcium and auxiliary proteins. Protein Science, 2016, 25, 1573-1584.	7.6	40
33	Polarized localization of voltage-gated Na ⁺ channels is regulated by concerted FGF13 and FGF14 action. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2665-74.	7.1	52
34	Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell, 2016, 19, 406-414.	11.1	182
35	Long QT Syndrome and Seizures. JACC: Clinical Electrophysiology, 2016, 2, 277-278.	3.2	1
36	FGF13 modulates the gating properties of the cardiac sodium channel Na _v 1.5 in an isoform-specific manner. Channels, 2016, 10, 410-420.	2.8	33

#	Article	IF	CITATIONS
37	A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. Journal of Molecular and Cellular Cardiology, 2016, 92, 52-62.	1.9	19
38	Genetic variants and disease: correlate or cause?. European Heart Journal, 2016, 37, 1476-1478.	2.2	1
39	Fibroblast Growth Factor Homologous Factors. Neuroscientist, 2016, 22, 19-25.	3.5	34
40	α1-Syntrophin Variant Identified in Drug-Induced Long QT Syndrome Increases Late Sodium Current. PLoS ONE, 2016, 11, e0152355.	2.5	10
41	Calcium signaling regulates ventricular hypertrophy during development independent of contraction or blood flow. Journal of Molecular and Cellular Cardiology, 2015, 80, 1-9.	1.9	12
42	The PDZ Motif of the α1C Subunit Is Not Required for Surface Trafficking and Adrenergic Modulation of CaV1.2 Channel in the Heart. Journal of Biological Chemistry, 2015, 290, 2166-2174.	3.4	9
43	Na ⁺ channel function, regulation, structure, trafficking and sequestration. Journal of Physiology, 2015, 593, 1347-1360.	2.9	59
44	CardioPulse ArticlesCardiovascular precision medicine: hope or hype?. European Heart Journal, 2015, 36, 1842-1843.	2.2	10
45	<i>SCN5A</i> variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12528-12533.	7.1	51
46	STIM1–Ca ²⁺ signaling modulates automaticity of the mouse sinoatrial node. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5618-27.	7.1	47
47	Calcium Channel Mutations in Cardiac Arrhythmia Syndromes. Current Molecular Pharmacology, 2015, 8, 133-142.	1.5	50
48	Calmodulin and CaMKII as Ca2+ Switches for Cardiac Ion Channels. , 2014, , 189-195.		1
49	A CACNA1C Variant Associated with Reduced Voltage-Dependent Inactivation, Increased CaV1.2 Channel Window Current, and Arrhythmogenesis. PLoS ONE, 2014, 9, e106982.	2.5	43
50	Structural analyses of Ca2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. Nature Communications, 2014, 5, 4896.	12.8	86
51	FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. ELife, 2014, 3, e04193.	6.0	56
52	FGF12 is a candidate Brugada syndrome locus. Heart Rhythm, 2013, 10, 1886-1894.	0.7	94
53	FGF14 Regulates Presynaptic Ca2+ Channels and Synaptic Transmission. Cell Reports, 2013, 4, 66-75.	6.4	61
54	Fibroblast Growth Factor Homologous Factors Modulate Cardiac Calcium Channels. Circulation Research, 2013, 113, 381-388.	4.5	65

#	Article	IF	CITATIONS
55	The Auxiliary Subunit KChIP2 Is an Essential Regulator of Homeostatic Excitability. Journal of Biological Chemistry, 2013, 288, 13258-13268.	3.4	22
56	Long-Term In Vivo Imaging of Multiple Organs at the Single Cell Level. PLoS ONE, 2013, 8, e52087.	2.5	18
57	Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. Journal of Clinical Investigation, 2013, 123, 1638-1646.	8.2	71
58	Dissection of a Quantitative Trait Locus for PR Interval Duration Identifies Tnni3k as a Novel Modulator of Cardiac Conduction. PLoS Genetics, 2012, 8, e1003113.	3.5	45
59	Thermosensory and Nonthermosensory Isoforms of Drosophila melanogaster TRPA1 Reveal Heat-Sensor Domains of a ThermoTRP Channel. Cell Reports, 2012, 1, 43-55.	6.4	198
60	A VGF-Derived Peptide Attenuates Development of Type 2 Diabetes via Enhancement of Islet β-Cell Survival and Function. Cell Metabolism, 2012, 16, 33-43.	16.2	79
61	Can Polymorphisms Predict Response to Antiarrhythmic Drugs in Atrial Fibrillation?. Journal of the American College of Cardiology, 2012, 60, 546-547.	2.8	2
62	Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin. Structure, 2012, 20, 1167-1176.	3.3	138
63	Pinning down the CaMKII targets in the L-type Ca2+ channel: An essential step in defining CaMKII regulation. Heart Rhythm, 2011, 8, 631-633.	0.7	7
64	Fibroblast Growth Factor Homologous Factors in the Heart: A Potential Locus for Cardiac Arrhythmias. Trends in Cardiovascular Medicine, 2011, 21, 199-203.	4.9	15
65	Rem2-Targeted shRNAs Reduce Frequency of Miniature Excitatory Postsynaptic Currents without Altering Voltage-Gated Ca2+ Currents. PLoS ONE, 2011, 6, e25741.	2.5	12
66	Fibroblast Growth Factor Homologous Factor 13 Regulates Na ⁺ Channels and Conduction Velocity in Murine Hearts. Circulation Research, 2011, 109, 775-782.	4.5	104
67	The S1103Y Cardiac Sodium Channel Variant Is Associated With Implantable Cardioverter-Defibrillator Events in Blacks With Heart Failure and Reduced Ejection Fraction. Circulation: Cardiovascular Genetics, 2011, 4, 163-168.	5.1	46
68	Identification of Novel Interaction Sites that Determine Specificity between Fibroblast Growth Factor Homologous Factors and Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 24253-24263.	3.4	73
69	<i>The glitter of gold: biolistic transfection of fresh adult cardiac myocytes.</i> Focus on "Normal targeting of a tagged Kv1.5 channel acutely transfected into fresh adult cardiac myocytes by a biolistic methodâ€. American Journal of Physiology - Cell Physiology, 2010, 298, C1305-C1307.	4.6	0
70	Solution Structure of the NaV1.2 C-terminal EF-hand Domain. Journal of Biological Chemistry, 2009, 284, 6446-6454.	3.4	42
71	Channeling a New Focus for Heart Failure: Insights Into Ion Channels. Journal of Cardiovascular Pharmacology, 2009, 54, 95-97.	1.9	0
72	Accessory Subunit KChIP2 Modulates the Cardiac L-Type Calcium Current. Circulation Research, 2009, 104, 1382-1389.	4.5	88

#	Article	IF	CITATIONS
73	Calcineurin Finds a New Partner in the L-Type Ca ²⁺ Channel. Circulation Research, 2009, 105, 7-8.	4.5	3
74	Genetics of cardiac repolarization. Nature Genetics, 2009, 41, 388-389.	21.4	6
75	Rationale and design of the Duke Electrophysiology Genetic and Genomic Studies (EPGEN) biorepository. American Heart Journal, 2009, 158, 719-725.	2.7	8
76	Determination Of The Specificity For FHF/Na Channel Interactions. Biophysical Journal, 2009, 96, 250a.	0.5	0
77	Ca ²⁺ /CaM Controls Ca ²⁺ -Dependent Inactivation of NMDA Receptors by Dimerizing the NR1 C Termini. Journal of Neuroscience, 2008, 28, 1865-1870.	3.6	27
78	Calmodulin and CaMKII as molecular switches for cardiac ion channels: Fig. 1. Cardiovascular Research, 2007, 73, 641-647.	3.8	81
79	Added Benefit of Mineralocorticoid Receptor Blockade in the Primary Prevention of Sudden Cardiac Death. Circulation, 2007, 115, 2976-2982.	1.6	25
80	Ca ²⁺ /Calmodulin Regulates Trafficking of Ca _V 1.2 Ca ²⁺ Channels in Cultured Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 9086-9093.	3.6	54
81	Remodeled cardiac calcium channels. Journal of Molecular and Cellular Cardiology, 2006, 41, 373-388.	1.9	50
82	Aldosterone, ion channels, and sudden death: another piece of the circle?. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2176-H2177.	3.2	4
83	Dose-dependent and Isoform-specific Modulation of Ca2+ Channels by RGK GTPases. Journal of General Physiology, 2006, 128, 605-613.	1.9	45
84	KCNQ1 Assembly and Function Is Blocked by Long-QT Syndrome Mutations That Disrupt Interaction With Calmodulin. Circulation Research, 2006, 98, 1048-1054.	4.5	154
85	The real estate of cardiac signaling: Location, location, location. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7535-7536.	7.1	12
86	Essential Cavβ modulatory properties are AID-independent. Nature Structural and Molecular Biology, 2005, 12, 372-377.	8.2	60
87	CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. Journal of Cell Biology, 2005, 171, 537-547.	5.2	307
88	Calmodulin Mediates Ca2+ Sensitivity of Sodium Channels. Journal of Biological Chemistry, 2004, 279, 45004-45012.	3.4	161
89	Identification of the Components Controlling Inactivation of Voltage-Gated Ca2+ Channels. Neuron, 2004, 41, 745-754.	8.1	151
90	Calcium Channel Function Regulated by the SH3-GK Module in Î ² Subunits. Neuron, 2004, 42, 89-99.	8.1	69

#	Article	IF	CITATIONS
91	Cellular Functions of Calcium Channel Subtypes. , 2004, , 237-275.		1
92	Molecular Basis of Calmodulin Tethering and Ca2+-dependent Inactivation of L-type Ca2+ Channels. Journal of Biological Chemistry, 2001, 276, 30794-30802.	3.4	265
93	Ca2+-sensitive Inactivation and Facilitation of L-type Ca2+ Channels Both Depend on Specific Amino Acid Residues in a Consensus Calmodulin-binding Motif in theα1C subunit. Journal of Biological Chemistry, 2000, 275, 21121-21129.	3.4	174
94	Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature, 1999, 399, 159-162.	27.8	838
95	Role of cAMP-Dependent Protein Kinase in Controlling Aggregation and Postaggregative Development inDictyostelium. Developmental Biology, 1997, 183, 208-221.	2.0	74
96	Adenylyl Cyclase G, an Osmosensor Controlling Germination of Dictyostelium Spores. Journal of Biological Chemistry, 1996, 271, 23623-23625.	3.4	79
97	Structurally distinct and stage-specific adenylyl cyclase genes play different roles in dictyostelium development. Cell, 1992, 69, 305-315.	28.9	313