Sandrine Silvente-Poirot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8256393/publications.pdf

Version: 2024-02-01

68 papers

3,830 citations

35 h-index 61 g-index

68 all docs 68 docs citations

68 times ranked 7066 citing authors

#	Article	IF	CITATIONS
1	Oxysterols are potential physiological regulators of ageing. Ageing Research Reviews, 2022, 77, 101615.	10.9	21
2	Targeting the liver X receptor with dendrogenin A differentiates tumour cells to secrete immunogenic exosomeâ€enriched vesicles. Journal of Extracellular Vesicles, 2022, 11, e12211.	12.2	8
3	The 5,6â€epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. British Journal of Pharmacology, 2021, 178, 3248-3260.	5.4	27
4	Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti–PD-1 Therapy Efficacy. Cancer Immunology Research, 2021, 9, 568-582.	3.4	30
5	Dendrogenin A Enhances Anti-Leukemic Effect of Anthracycline in Acute Myeloid Leukemia. Cancers, 2020, 12, 2933.	3.7	7
6	Dendrogenin A Synergizes with Cytarabine to Kill Acute Myeloid Leukemia Cells In Vitro and In Vivo. Cancers, 2020, 12, 1725.	3.7	13
7	A fast UPLC–HILIC method for an accurate quantiï¬cation of dendrogenin A in human tissues. Journal of Steroid Biochemistry and Molecular Biology, 2019, 194, 105447.	2.5	7
8	Oxysterols: An expanding family of structurally diversified bioactive steroids. Journal of Steroid Biochemistry and Molecular Biology, 2019, 194, 105443.	2.5	9
9	The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105390.	2.5	22
10	Natural and semisynthetic oxyprenylated aromatic compounds as stimulators or inhibitors of melanogenesis. Bioorganic Chemistry, 2019, 87, 181-190.	4.1	9
11	Flavonoids differentially modulate liver X receptors activity—Structure-function relationship analysis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 190, 173-182.	2.5	22
12	Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3Î ² ,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie, 2018, 153, 139-149.	2.6	21
13	The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochemical Pharmacology, 2018, 153, 75-81.	4.4	48
14	Ligand-dependent transcriptional induction of lethal autophagy: A new perspective for cancer treatment. Autophagy, 2018, 14, 555-557.	9.1	25
15	Extracellular vesicles: lipids as key components of their biogenesis and functions. Journal of Lipid Research, 2018, 59, 1316-1324.	4.2	208
16	The Effects of Cholesterol-Derived Oncometabolites on Nuclear Receptor Function in Cancer. Cancer Research, 2018, 78, 4803-4808.	0.9	45
17	Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 210-218.	2.5	48
18	Improvement of $5.6l^{\pm}$ -epoxycholesterol, $5.6l^{2}$ -epoxycholesterol, cholestane- $3l^{2}.5l^{\pm}.6l^{2}$ -triol and 6-oxo-cholestan- $3l^{2}.5l^{\pm}$ -diol recovery for quantification by GC/MS. Chemistry and Physics of Lipids, 2017, 207, 92-98.	3.2	7

#	Article	IF	CITATIONS
19	Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9346-E9355.	7.1	96
20	Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nature Communications, 2017, 8, 1903.	12.8	84
21	Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochemical Pharmacology, 2017, 144, 18-28.	4.4	43
22	Quantitative analysis of the tumor suppressor dendrogenin A using liquid chromatography tandem mass spectrometry. Chemistry and Physics of Lipids, 2017, 207, 81-86.	3.2	8
23	When cholesterol meets histamine, it gives rise to dendrogenin A: a tumour suppressor metabolite1. Biochemical Society Transactions, 2016, 44, 631-637.	3.4	17
24	From tamoxifen to dendrogenin A: The discovery of a mammalian tumor suppressor and cholesterol metabolite. Biochimie, 2016, 130, 109-114.	2.6	21
25	Dendrogenin A and B two new steroidal alkaloids increasing neural responsiveness in the deafened guinea pig. Frontiers in Aging Neuroscience, 2015, 7, 145.	3.4	11
26	Dendrogenin A: A Mammalian Metabolite of Cholesterol with Tumor Suppressor and Neurostimulating Properties. Current Medicinal Chemistry, 2015, 22, 3533-3549.	2.4	24
27	Cholesterol and Cancer, in the Balance. Science, 2014, 343, 1445-1446.	12.6	182
28	Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie, 2014, 96, 67-74.	2.6	62
29	One step synthesis of 6-oxo-cholestan-3 \hat{l}^2 ,5 \hat{l} ±-diol. Biochemical and Biophysical Research Communications, 2014, 446, 782-785.	2.1	11
30	The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells. Biochemical and Biophysical Research Communications, 2014, 446, 681-686.	2.1	21
31	Dendrogenin_A: A Natural Liver X Receptor Modulator for the Treatment of Acute Myeloid Leukemia. Blood, 2014, 124, 3767-3767.	1.4	О
32	5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of Tamoxifen in breast cancer cells. Biochemical Pharmacology, 2013, 86, 175-189.	4.4	56
33	Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie, 2013, 95, 622-631.	2.6	69
34	Technical note: Hapten synthesis, antibody production and development of an enzyme-linked immunosorbent assay for detection of the natural steroidal alkaloid Dendrogenin A. Biochimie, 2013, 95, 482-488.	2.6	1
35	Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties. Nature Communications, 2013, 4, 1840.	12.8	101
36	Antiestrogen-binding site ligands induce autophagy in myeloma cells that proceeds through alteration of cholesterol metabolism. Oncotarget, 2013, 4, 911-922.	1.8	27

#	Article	IF	CITATIONS
37	Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles. Journal of Lipid Research, 2012, 53, 718-725.	4.2	36
38	Cholesterol epoxide hydrolase and cancer. Current Opinion in Pharmacology, 2012, 12, 696-703.	3.5	71
39	Cholesterol metabolism and resistance to tamoxifen. Current Opinion in Pharmacology, 2012, 12, 683-689.	3.5	49
40	[¹⁸ F]Siâ€RiboRGD: From Design and Synthesis to the Imaging of α _v β ₃ â€Integrins in Melanoma Tumors. ChemPlusChem, 2012, 77, 345-349.	2.8	11
41	Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology, 2011, 81, 1171-1182.	4.4	471
42	Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chemistry and Physics of Lipids, 2011, 164, 432-437.	3.2	51
43	Development of a new radioligand for cholecystokinin receptor subtype 2 scintigraphy: From molecular modeling to in vivo evaluation. Bioorganic and Medicinal Chemistry, 2010, 18, 5400-5412.	3.0	12
44	Synthesis, characterization and in vitro evaluation of new oxorhenium- and oxotechnetium-CCK4 derivatives as molecular imaging agents for CCK2-receptor targeting. European Journal of Medicinal Chemistry, 2010, 45, 423-429.	5.5	8
45	Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 2010, 51, 2105-2120.	4.2	528
46	Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13520-13525.	7.1	109
47	Auraptene Is an Inhibitor of Cholesterol Esterification and a Modulator of Estrogen Receptors. Molecular Pharmacology, 2010, 78, 827-836.	2.3	50
48	Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. Journal of Lipid Research, 2009, 50, 2203-2211.	4.2	64
49	Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy, 2009, 5, 1066-1067.	9.1	86
50	Synthesis of New Alkylaminooxysterols with Potent Cell Differentiating Activities: Identification of Leads for the Treatment of Cancer and Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2009, 52, 7765-7777.	6.4	55
51	Microsomal antiestrogen-binding site ligands induce growth control and differentiation of human breast cancer cells through the modulation of cholesterol metabolism. Molecular Cancer Therapeutics, 2008, 7, 3707-3718.	4.1	56
52	Insights into the Cholecystokinin 2 Receptor Binding Site and Processes of Activation. Molecular Pharmacology, 2006, 70, 1935-1945.	2.3	8
53	The Prototypical Inhibitor of Cholesterol Esterification, Sah 58-035 [3-[Decyldimethylsily]]-N-[2-(4-methylphenyl)-1-phenylethyl]propanamide], Is an Agonist of Estrogen Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 139-149.	2.5	20
54	Molecular Characterization of the Microsomal Tamoxifen Binding Site. Journal of Biological Chemistry, 2004, 279, 34048-34061.	3.4	84

#	Article	IF	CITATIONS
55	Tamoxifen Is a Potent Inhibitor of Cholesterol Esterification and Prevents the Formation of Foam Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1165-1173.	2.5	71
56	High tumorigenic potential of a constitutively active mutant of the cholecystokinin 2 receptor. Oncogene, 2003, 22, 6081-6089.	5.9	28
57	Identification of Tyrosine 189 and Asparagine 358 of the Cholecystokinin 2 Receptor in Direct Interaction with the Crucial C-Terminal Amide of Cholecystokinin by Molecular Modeling, Site-Directed Mutagenesis, and Structure/Affinity Studies. Molecular Pharmacology, 2003, 63, 973-982.	2.3	25
58	The Biologically Crucial C Terminus of Cholecystokinin and the Non-peptide Agonist SR-146,131 Share a Common Binding Site in the Human CCK1 Receptor. Journal of Biological Chemistry, 2002, 277, 7546-7555.	3.4	63
59	Structure of Cholecystokinin Receptor Binding Sites and Mechanism of Activation/Inactivation by Agonists/Antagonists. Basic and Clinical Pharmacology and Toxicology, 2002, 91, 313-320.	0.0	35
60	Mutation of Asn-391 within the Conserved NPXXY Motif of the Cholecystokinin B Receptor Abolishes Gq Protein Activation without Affecting Its Association with the Receptor. Journal of Biological Chemistry, 2000, 275, 17321-17327.	3.4	52
61	The Third Intracellular Loop of the Rat and Mouse Cholecystokinin-A Receptors Is Responsible for Different Patterns of Gene Activation. Molecular Pharmacology, 2000, 58, 1381-1388.	2.3	10
62	Evidence for a Direct Interaction between the Penultimate Aspartic Acid of Cholecystokinin and Histidine 207, Located in the Second Extracellular Loop of the Cholecystokinin B Receptor. Journal of Biological Chemistry, 1999, 274, 23191-23197.	3.4	42
63	Arginine 197 of the cholecystokininâ€A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin. Protein Science, 1999, 8, 2347-2354.	7.6	50
64	Met-195 of the Cholecystokinin-A Receptor Interacts with the Sulfated Tyrosine of Cholecystokinin and Is Crucial for Receptor Transition to High Affinity State. Journal of Biological Chemistry, 1998, 273, 14380-14386.	3.4	71
65	Role of the Extracellular Domains of the Cholecystokinin Receptor in Agonist Binding. Molecular Pharmacology, 1998, 54, 364-371.	2.3	65
66	Ligand-induced Internalization of Cholecystokinin Receptors. Journal of Biological Chemistry, 1997, 272, 18179-18184.	3.4	38
67	A Segment of Five Amino Acids in the Second Extracellular Loop of the Cholecystokinin-B Receptor Is Essential for Selectivity of the Peptide Agonist Gastrin. Journal of Biological Chemistry, 1996, 271, 14698-14706.	3.4	58
68	A new probe for affinity labelling pancreatic cholecystokinin receptor with minor modification of its structure. FEBS Journal, 1989, 185, 397-403.	0.2	42