
Katsuhiko S Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8255504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology, 2022, 5, 169.	4.4	118
2	Optimization of Benzoxazinorifamycins to Minimize hPXR Activation for the Treatment of Tuberculosis and HIV Coinfection. ACS Infectious Diseases, 2022, 8, 1408-1421.	3.8	1
3	Optimization of Benzoxazinorifamycins to Improve <i>Mycobacterium tuberculosis</i> RNA Polymerase Inhibition and Treatment of Tuberculosis. ACS Infectious Diseases, 2022, 8, 1422-1438.	3.8	1
4	On the stability of stalled RNA polymerase and its removal by RapA. Nucleic Acids Research, 2022, 50, 7396-7405.	14.5	3
5	Structural basis of ribosomal RNA transcription regulation. Nature Communications, 2021, 12, 528.	12.8	46
6	Transcription RNA Polymerase Reaction in Bacteria. , 2021, , 358-364.		3
7	The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Nature Communications, 2021, 12, 796.	12.8	8
8	Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography. The Enzymes, 2021, 49, 305-314.	1.7	1
9	Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. Journal of Biological Chemistry, 2021, 297, 101404.	3.4	14
10	Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus aureus-Based Wound Infection Model in SKH1 Mice. ACS Infectious Diseases, 2020, 6, 2573-2581.	3.8	5
11	Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nature Communications, 2020, 11, 6123.	12.8	5
12	Structural basis of reiterative transcription from the pyrG and pyrBI promoters by bacterial RNA polymerase. Nucleic Acids Research, 2020, 48, 2144-2155.	14.5	10
13	Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nature Communications, 2020, 11, 6419.	12.8	22
14	Molecular basis of microhomology-mediated end-joining by purified full-length PolÎ,. Nature Communications, 2019, 10, 4423.	12.8	66
15	Structure and function of an unusual flavodoxin from the domain <i>Archaea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25917-25922.	7.1	17
16	Allosteric Effector ppGpp Potentiates the Inhibition of Transcript Initiation by DksA. Molecular Cell, 2018, 69, 828-839.e5.	9.7	89
17	Cryo-EM structure of Escherichia coli σ70 RNA polymerase and promoter DNA complex revealed a role of Ĩƒ non-conserved region during the open complex formation. Journal of Biological Chemistry, 2018, 293, 7367-7375.	3.4	61
18	Mode of Action of Kanglemycin A, an Ansamycin Natural Product that Is Active against Rifampicin-Resistant Mycobacterium tuberculosis. Molecular Cell, 2018, 72, 263-274.e5.	9.7	51

Katsuhiko S Murakami

#	Article	IF	CITATIONS
19	Region 3.2 of the σ factor controls the stability of rRNA promoter complexes and potentiates their repression by DksA. Nucleic Acids Research, 2018, 46, 11477-11487.	14.5	16
20	Structure-function comparisons of (p)ppApp vs (p)ppGpp for Escherichia coli RNA polymerase binding sites and for rrnB P1 promoter regulatory responses in vitro. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 731-742.	1.9	26
21	Minimalism and functionality: Structural lessons from the heterodimeric N4 bacteriophage RNA polymerase II. Journal of Biological Chemistry, 2018, 293, 13616-13625.	3.4	4
22	An Introduction to the Structure and Function of the Catalytic Core Enzyme of <i>Escherichia coli</i> RNA Polymerase. EcoSal Plus, 2018, 8, .	5.4	44
23	Novel Chemical Scaffolds for Inhibition of Rifamycin-Resistant RNA Polymerase Discovered from High-Throughput Screening. SLAS Discovery, 2017, 22, 287-297.	2.7	11
24	Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2017, 103, 1034-1045.	2.5	76
25	X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8211-8216.	7.1	16
26	Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis. Nucleic Acids Research, 2016, 44, 2337-2347.	14.5	13
27	NusG Is a Sequence-specific RNA Polymerase Pause Factor That Binds to the Non-template DNA within the Paused Transcription Bubble. Journal of Biological Chemistry, 2016, 291, 5299-5308.	3.4	63
28	Structural Biology of Bacterial RNA Polymerase. Biomolecules, 2015, 5, 848-864.	4.0	93
29	X-ray Crystal Structures of <i>Escherichia coli</i> RNA Polymerase with Switch Region Binding Inhibitors Enable Rational Design of Squaramides with an Improved Fraction Unbound to Human Plasma Protein. Journal of Medicinal Chemistry, 2015, 58, 3156-3171.	6.4	36
30	Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews Microbiology, 2015, 13, 298-309.	28.6	703
31	Structures of the RNA polymerase-σ ⁵⁴ reveal new and conserved regulatory strategies. Science, 2015, 349, 882-885.	12.6	77
32	Fitness costs of rifampicin resistance in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of <scp>RNA</scp> polymerase. Molecular Microbiology, 2014, 91, 1106-1119.	2.5	85
33	The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nature Communications, 2014, 5, 5132.	12.8	36
34	Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme. Journal of Biological Chemistry, 2014, 289, 24549-24559.	3.4	159
35	Introduction to Nucleic Acid Polymerases: Families, Themes, and Mechanisms. Nucleic Acids and Molecular Biology, 2014, , 1-15.	0.2	3
36	Bacteriophage RNA Polymerases. Nucleic Acids and Molecular Biology, 2014, , 237-250.	0.2	1

Katsuhiko S Murakami

#	Article	IF	CITATIONS
37	Inactivation of the Bacterial RNA Polymerase Due to Acquisition of Secondary Structure by the ω Subunit. Journal of Biological Chemistry, 2013, 288, 25076-25087.	3.4	20
38	X-ray Crystal Structure of Escherichia coli RNA Polymerase Ï $_f$ 70 Holoenzyme. Journal of Biological Chemistry, 2013, 288, 9126-9134.	3.4	174
39	X-ray Crystal Structures of the <i>Escherichia coli</i> RNA Polymerase in Complex with Benzoxazinorifamycins. Journal of Medicinal Chemistry, 2013, 56, 4758-4763.	6.4	49
40	Watching the Bacteriophage N4 RNA Polymerase Transcription by Time-dependent Soak-trigger-freeze X-ray Crystallography. Journal of Biological Chemistry, 2013, 288, 3305-3311.	3.4	34
41	Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Research, 2013, 41, 6175-6189.	14.5	202
42	Transcriptional Regulation in Archaea. , 2013, , 2254-2258.		0
43	The Xâ€ray Crystal Structure of Escherichia Coli RNA Polymerase σ 70 Holoenzyme. FASEB Journal, 2013, 27, 547.2.	0.5	0
44	Time-Resolved Events on the Reaction Pathway of Transcript Initiation by a Single-Subunit RNA Polymerase: Raman Crystallographic Evidence. Journal of the American Chemical Society, 2011, 133, 12544-12555.	13.7	16
45	Archaeal RNA polymerase and transcription regulation. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 27-40.	5.2	55
46	RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 546-550.	7.1	139
47	X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3566-3571.	7.1	36
48	Functional Analysis of the Three TATA Binding Protein Homologs in <i>Methanosarcina acetivorans</i> . Journal of Bacteriology, 2010, 192, 1511-1517.	2.2	16
49	Archaeal RNA polymerase. Current Opinion in Structural Biology, 2009, 19, 724-731.	5.7	44
50	The X-ray crystal structure of RNA polymerase from Archaea. Nature, 2008, 451, 851-854.	27.8	193
51	Archaeal RNA polymerase subunits E and F are not required for transcription <i>in vitro</i> , but a <i>Thermococcus kodakarensis</i> mutant lacking subunit F is temperatureâ€sensitive. Molecular Microbiology, 2008, 70, 623-633.	2.5	43
52	Structural Basis for DNA-Hairpin Promoter Recognition by the Bacteriophage N4 Virion RNA Polymerase. Molecular Cell, 2008, 32, 707-717.	9.7	42
53	X-ray crystal structure of the polymerase domain of the bacteriophage N4 virion RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5046-5051.	7.1	20
54	Structure and Function of Lineage-specific Sequence Insertions in the Bacterial RNA Polymerase β′ Subunit. Journal of Molecular Biology, 2005, 353, 138-154.	4.2	62

#	Article	IF	CITATIONS
55	Bacterial RNA polymerases: the wholo story. Current Opinion in Structural Biology, 2003, 13, 31-39.	5.7	469
56	Co-overexpression of Escherichia coliRNA Polymerase Subunits Allows Isolation and Analysis of Mutant Enzymes Lacking Lineage-specific Sequence Insertions. Journal of Biological Chemistry, 2003, 278, 12344-12355.	3.4	132
57	Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex. Science, 2002, 296, 1285-1290.	12.6	597
58	Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 A Resolution. Science, 2002, 296, 1280-1284.	12.6	503
59	Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell, 2001, 104, 901-912.	28.9	1,219