Ming Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253565/publications.pdf Version: 2024-02-01

	36303	36028
9,765	51	97
citations	h-index	g-index
131	131	12307
docs citations	times ranked	citing authors
	citations 131	9,765 51 citations h-index 131 131

Μινς Ζησιι

#	Article	IF	CITATIONS
1	A Flexible Microfluidic Chip-Based Universal Fully Integrated Nanoelectronic System with Point-of-Care Raw Sweat, Tears, or Saliva Glucose Monitoring for Potential Noninvasive Glucose Management. Analytical Chemistry, 2022, 94, 1890-1900.	6.5	38
2	Signal-On Electrochemical Detection for Drug-Resistant Hepatitis B Virus Mutants through Three-Way Junction Transduction and Exonuclease III-Assisted Catalyzed Hairpin Assembly. Analytical Chemistry, 2022, 94, 600-605.	6.5	11
3	Wearable Microbial Fuel Cells for Sustainable Self-Powered Electronic Skins. ACS Applied Materials & Interfaces, 2022, 14, 8664-8668.	8.0	11
4	Guided Synthesis of a Mo/Zn Dual Singleâ€Atom Nanozyme with Synergistic Effect and Peroxidaseâ€like Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	72
5	Guided Synthesis of a Mo/Zn Dual Singleâ€Atom Nanozyme with Synergistic Effect and Peroxidaseâ€like Activity. Angewandte Chemie, 2022, 134, .	2.0	11
6	Single-Step and Room-Temperature Synthesis of Laser-Induced Pt/VC Nanocomposites as Effective Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2022, 14, 23332-23341.	8.0	5
7	Carbon nanorods assembled coral-like hierarchical meso-macroporous carbon as sustainable materials for efficient biosensing and biofuel cell. Analytica Chimica Acta, 2022, 1220, 339994.	5.4	3
8	Sweet potato derived three-dimensional carbon aerogels with a hierarchical meso–macroporous and branching nanostructure for electroanalysis. Analyst, The, 2021, 146, 1216-1223.	3.5	1
9	Rapid and facile laser-assistant preparation of Ru-ZIF-67-derived CoRu nanoalloy@N-doped graphene for electrocatalytic hydrogen evolution reaction at all pH values. Electrochimica Acta, 2021, 382, 138337.	5.2	18
10	A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy, 2021, 86, 106061.	16.0	63
11	Banana peel derived nitrogen-doped porous carbon with enhanced electrocatalytic activity for complete oxidation of methanol under room temperature. Sensors and Actuators B: Chemical, 2021, 344, 130112.	7.8	4
12	Laser conversion of biomass into porous carbon composite under ambient condition for pH-Universal electrochemical hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 604, 885-893.	9.4	12
13	A Bendable Biofuel Cell-Based Fully Integrated Biomedical Nanodevice for Point-of-Care Diagnosis of Scurvy. ACS Sensors, 2021, 6, 275-284.	7.8	34
14	Amperometric Ascorbic Acid Sensor Based on Disposable Facial Tissues Derived Carbon Aerogels. Chemical Research in Chinese Universities, 2020, 36, 139-144.	2.6	4
15	A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUTâ€9/Mesoporous Carbon Composite. Electroanalysis, 2020, 32, 648-655.	2.9	9
16	Thiourea-assistant growth of In2O3 porous pompon assembled from 2D nanosheets for enhanced ethanol sensing performance. Talanta, 2020, 219, 121323.	5.5	31
17	Fast and Facile Room-Temperature Synthesis of MOF-Derived Co Nanoparticle/Nitrogen-Doped Porous Graphene in Air Atmosphere for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 11947-11955.	6.7	36
18	Nickelâ€Based Metalâ€Organic Framework/Crosslinked Tubular Poly(3,4â€ethylenedioxythiophene) Composite as an Electrocatalyst for the Detection of Gallic Acid and Tinidazole. ChemElectroChem, 2020, 7, 4031-4037.	3.4	20

#	Article	IF	CITATIONS
19	Oxygen vacancy-enhanced photothermal performance and reactive oxygen species generation for synergistic tumour therapy. Chemical Communications, 2020, 56, 11259-11262.	4.1	16
20	Sustainability Perspective-Oriented Synthetic Strategy for Zinc Single-Atom Catalysts Boosting Electrocatalytic Reduction of Carbon Dioxide and Oxygen. ACS Sustainable Chemistry and Engineering, 2020, 8, 13813-13822.	6.7	35
21	DUT-67 and tubular polypyrrole formed a cross-linked network for electrochemical detection of nitrofurazone and ornidazole. Analytica Chimica Acta, 2020, 1109, 1-8.	5.4	48
22	FeNi Nanoparticles Embedded in Porous Nitrogen-Doped Graphene for Electrocatalytic Evolution of Hydrogen and Oxygen. ACS Applied Nano Materials, 2020, 3, 6336-6343.	5.0	15
23	Ultrasensitive electrochemiluminescence biosensing platform for miRNA-21 and MUC1 detection based on dual catalytic hairpin assembly. Analytica Chimica Acta, 2020, 1105, 87-94.	5.4	35
24	C ₆₀ (OH) ₁₂ and Its Nanocomposite for High-Performance Lithium Storage. ACS Nano, 2020, 14, 1600-1608.	14.6	11
25	Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Analytica Chimica Acta, 2020, 1116, 16-26.	5.4	26
26	Facile controlled synthesis of AuPd and AuPt bimetallic nanocrystals for enhanced electrocatalytic sensing. Sensors and Actuators B: Chemical, 2019, 298, 126724.	7.8	20
27	Metal–Organic Framework-Integrated Enzymes as Bioreactor for Enhanced Therapy against Solid Tumor via a Cascade Catalytic Reaction. ACS Biomaterials Science and Engineering, 2019, 5, 6207-6215.	5.2	55
28	Insight into a class of cobalt nitrides for oxygen evolution catalysis: Nitrogen-rich matters. Electrochimica Acta, 2019, 323, 134684.	5.2	17
29	A nanocomposite prepared from metal-free mesoporous carbon nanospheres and graphene oxide for voltammetric determination of doxorubicin. Mikrochimica Acta, 2019, 186, 639.	5.0	21
30	Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta, 2019, 200, 300-306.	5.5	57
31	Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Mikrochimica Acta, 2019, 186, 238.	5.0	65
32	Cobalt-doped carbon nitride supported on ordered mesoporous carbon as noble metal-free oxygen reduction electrocatalysts. Journal of Physics and Chemistry of Solids, 2019, 131, 111-118.	4.0	11
33	Designing iron carbide embedded isolated boron (B) and nitrogen (N) atoms co-doped porous carbon fibers networks with tiny amount of B N bonds as high-efficiency oxygen reduction reaction catalysts. Journal of Colloid and Interface Science, 2019, 533, 709-722.	9.4	31
34	Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting. Journal of Colloid and Interface Science, 2019, 537, 280-294.	9.4	28
35	Low-cost and environment-friendly synthesis of carbon nanorods assembled hierarchical meso-macroporous carbons networks aerogels from natural apples for the electrochemical determination of ascorbic acid and hydrogen peroxide. Analytica Chimica Acta, 2019, 1047, 36-44.	5.4	34
36	Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide. Journal of Energy Chemistry, 2019, 34, 161-170.	12.9	31

#	Article	IF	CITATIONS
37	Graphene Oxides Used as a New "Dual Role―Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 15665-15672.	8.0	56
38	Crab Shellâ€Templated Fe and N Co–Doped Mesoporous Carbon Nanofibers as a Highly Efficient Oxygen Reduction Reaction Electrocatalyst. ChemistrySelect, 2018, 3, 3722-3730.	1.5	6
39	Designing and synthesizing various nickel nitride (Ni3N) nanosheets dispersed carbon nanomaterials with different structures and porosities as the high-efficiency non-enzymatic sensors. Sensors and Actuators B: Chemical, 2018, 260, 962-975.	7.8	13
40	Electrochemical sensing platform based on kelp-derived hierarchical meso-macroporous carbons. Analytica Chimica Acta, 2018, 1003, 16-25.	5.4	24
41	The biomass of ground cherry husks derived carbon nanoplates for electrochemical sensing. Sensors and Actuators B: Chemical, 2018, 255, 3248-3256.	7.8	59
42	Synthesis of a three-dimensional interconnected carbon nanorod aerogel from wax gourd for amperometric sensing. Mikrochimica Acta, 2018, 185, 482.	5.0	20
43	Recent Advances in the Construction of Biofuel Cells Based Selfâ€powered Electrochemical Biosensors: A Review. Electroanalysis, 2018, 30, 2535-2550.	2.9	68
44	Amperometric sensing of ascorbic acid by using a glassy carbon electrode modified with mesoporous carbon nanorods. Mikrochimica Acta, 2018, 185, 474.	5.0	14
45	Biomass waste derived carbon nanoballs aggregation networks-based aerogels as electrode material for electrochemical sensing. Sensors and Actuators B: Chemical, 2018, 277, 195-204.	7.8	54
46	Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Analytica Chimica Acta, 2018, 1029, 15-23.	5.4	33
47	Monodisperse and Tiny Co ₂ N _{0.67} Nanocrystals Uniformly Embedded over Two Curving Surfaces of Hollow Carbon Microfibers as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2018, 1, 4461-4473.	5.0	23
48	Comparison Study toward the Influence of the Second Metals Doping on the Oxygen Evolution Activity of Cobalt Nitrides. ACS Sustainable Chemistry and Engineering, 2018, 6, 11457-11465.	6.7	51
49	Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta, 2018, 188, 339-348.	5.5	33
50	Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting. Journal of Alloys and Compounds, 2018, 764, 88-95.	5.5	29
51	Hybridized Polyoxometalateâ€Based Metal–Organic Framework with Ketjenblack for the Nonenzymatic Detection of H ₂ O ₂ . Chemistry - an Asian Journal, 2018, 13, 2054-2059.	3.3	49
52	Electrochemical sensors and biosensors based on less aggregated graphene. Biosensors and Bioelectronics, 2017, 89, 167-186.	10.1	113
53	Hybrid carbon nanowire networks with Fe–P bond active site for efficient oxygen/hydrogen-based electrocatalysis. Nano Energy, 2017, 33, 221-228.	16.0	121
54	A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2017, 5, 5413-5425.	10.3	124

#	Article	IF	CITATIONS
55	Design and synthesis of integrally structured Ni ₃ N nanosheets/carbon microfibers/Ni ₃ N nanosheets for efficient full water splitting catalysis. Journal of Materials Chemistry A, 2017, 5, 9377-9390.	10.3	123
56	Recent progress in electrochemical sensing of cardiac troponin by using nanomaterial-induced signal amplification. Mikrochimica Acta, 2017, 184, 1573-1585.	5.0	32
57	Electrogenerated chemiluminescence biosensing method for highly sensitive detection of DNA hydroxymethylation: Combining glycosylation with Ru(phen) 3 2+ -assembled graphene oxide. Journal of Electroanalytical Chemistry, 2017, 795, 123-129.	3.8	18
58	Electrochemical capacitor performance of TiO2 nanostructures and porous MnO2 composite supported on carbon fiber paper. Ceramics International, 2017, 43, 10595-10600.	4.8	8
59	Fe, Co bimetal activated N-doped graphitic carbon layers as noble metal-free electrocatalysts for high-performance oxygen reduction reaction. Journal of Alloys and Compounds, 2017, 710, 57-65.	5.5	52
60	Flower-like NiFe layered double hydroxides coated MnO2 for high-performance flexible supercapacitors. Journal of Energy Storage, 2017, 11, 242-248.	8.1	50
61	Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy, 2017, 40, 327-335.	16.0	49
62	Amperometric ascorbic acid biosensor based on carbon nanoplatelets derived from ground cherry husks. Electrochemistry Communications, 2017, 82, 139-144.	4.7	18
63	Advancing Lithium–Oxygen Battery Technology with an Iron–Nitrogenâ€Doped Mesoporous Core–Shell Carbon Cathode Loaded with Ruthenium(IV) Oxide Nanoparticles. Energy Technology, 2017, 5, 732-739.	3.8	6
64	Development of Conjugated Polymers for Memory Device Applications. Polymers, 2017, 9, 25.	4.5	31
65	Structurally Defined 3D Nanographene Assemblies via Bottomâ€Up Chemical Synthesis for Highly Efficient Lithium Storage. Advanced Materials, 2016, 28, 10250-10256.	21.0	72
66	Enzymeless electrochemical detection of hydrogen peroxide at Pd nanoparticles/porous graphene. Journal of Electroanalytical Chemistry, 2016, 781, 204-211.	3.8	32
67	Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10786-10793.	10.3	125
68	The influence of oxidation debris containing in graphene oxide on the adsorption and electrochemical properties of 1,10-phenanthroline-5,6-dione. Analyst, The, 2016, 141, 2761-2766.	3.5	11
69	Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chemical Society Reviews, 2016, 45, 1273-1307.	38.1	589
70	Mitigating the Degradation of Carbon-Supported Pt Electrocatalysts by Tungsten Oxide Nanoplates. Electrochimica Acta, 2016, 188, 529-536.	5.2	14
71	Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem, 2015, 7, 2744-2764.	3.7	59
72	Recent Progress on the Development of Biofuel Cells for Selfâ€Powered Electrochemical Biosensing and Logic Biosensing: A Review. Electroanalysis, 2015, 27, 1786-1810.	2.9	83

#	Article	IF	CITATIONS
73	Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosensors and Bioelectronics, 2015, 64, 306-310.	10.1	59
74	Electrogenerated chemiluminescence biosensing method for methyltransferase activity using tris(1,) Tj ETQq0 0 C 731, 133-138.) rgBT /Ov 3.8	erlock 10 Tf 12
75	Highly Alloyed PtRu Nanoparticles Confined in Porous Carbon Structure as a Durable Electrocatalyst for Methanol Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 18938-18950.	8.0	23
76	DNA-hosted Hoechst dyes: application for label-free fluorescent monitoring of endonuclease activity and inhibition. Analyst, The, 2014, 139, 5682-5685.	3.5	14
77	Outâ€ofâ€Cell Oxygen Diffusivity Evaluation in Lithium–Air Batteries. ChemElectroChem, 2014, 1, 2052-2057.	3.4	6
78	Structuring Porous Ironâ€Nitrogenâ€Doped Carbon in a Core/Shell Geometry for the Oxygen Reduction Reaction. Advanced Energy Materials, 2014, 4, 1400840.	19.5	73
79	Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Physical Chemistry Chemical Physics, 2013, 15, 19730.	2.8	101
80	Gas transport in porous electrodes of solid oxide fuel cells: A review on diffusion and diffusivity measurement. Journal of Power Sources, 2013, 237, 64-73.	7.8	73
81	Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sensors and Actuators B: Chemical, 2013, 181, 501-508.	7.8	173
82	A Self-Powered Acetaldehyde Sensor Based on Biofuel Cell. Analytical Chemistry, 2012, 84, 10345-10349.	6.5	76
83	The evaluation of Coulombic interaction in the oriented-attachment growth of colloidal nanorods. Analyst, The, 2012, 137, 4917.	3.5	21
84	Graphene Enhanced Electron Transfer at Aptamer Modified Electrode and Its Application in Biosensing. Analytical Chemistry, 2012, 84, 7301-7307.	6.5	106
85	DNAzyme logic-controlled biofuel cells for self-powered biosensors. Chemical Communications, 2012, 48, 3815.	4.1	50
86	A Selfâ€Powered "Senseâ€Actâ€Treat―System that is Based on a Biofuel Cell and Controlled by Boolean Logic. Angewandte Chemie - International Edition, 2012, 51, 2686-2689.	13.8	139
87	Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochimica Acta, 2012, 76, 512-517.	5.2	120
88	Small-size biofuel cell on paper. Biosensors and Bioelectronics, 2012, 35, 155-159.	10.1	113
89	Multiplexed and switchable release of distinct fluids from microneedle platforms via conducting polymer nanoactuators for potential drug delivery. Sensors and Actuators B: Chemical, 2012, 161, 1018-1024.	7.8	42
90	Biofuel Cells for Selfâ€Powered Electrochemical Biosensing and Logic Biosensing: A Review. Electroanalysis, 2012, 24, 197-209.	2.9	149

Мімс Zhou

#	Article	IF	CITATIONS
91	G-Quadruplex-based DNAzyme for colorimetric detection ofcocaine: Using magnetic nanoparticles as the separation and amplification element. Analyst, The, 2011, 136, 493-497.	3.5	99
92	Dynamic Isolation and Unloading of Target Proteins by Aptamer-Modified Microtransporters. Analytical Chemistry, 2011, 83, 7962-7969.	6.5	122
93	Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene. Chemical Communications, 2011, 47, 7794.	4.1	114
94	Enzyme-based NAND gate for rapid electrochemical screening of traumatic brain injury in serum. Analytica Chimica Acta, 2011, 703, 94-100.	5.4	25
95	Bioelectrochemical Interface Engineering: Toward the Fabrication of Electrochemical Biosensors, Biofuel Cells, and Self-Powered Logic Biosensors. Accounts of Chemical Research, 2011, 44, 1232-1243.	15.6	262
96	Microfluidic Electrochemical Aptameric Assay Integrated On-Chip: A Potentially Convenient Sensing Platform for the Amplified and Multiplex Analysis of Small Molecules. Analytical Chemistry, 2011, 83, 1523-1529.	6.5	92
97	Bicomponent Microneedle Array Biosensor for Minimallyâ€Invasive Glutamate Monitoring. Electroanalysis, 2011, 23, 2302-2309.	2.9	99
98	Modification of surface layer of magnesium oxide via partial dissolution and re-growth of crystallites. Applied Surface Science, 2011, 257, 3412-3416.	6.1	7
99	Boolean logic gates based on oxygen-controlled biofuel cell in "one pot― Electrochimica Acta, 2011, 56, 4112-4118.	5.2	26
100	â€~Non-destructive' biocomputing security system based on gas-controlled biofuel cell and potentially used for intelligent medical diagnostics. Bioinformatics, 2011, 27, 399-404.	4.1	19
101	A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosensors and Bioelectronics, 2010, 25, 1544-1547.	10.1	48
102	Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions. Biosensors and Bioelectronics, 2010, 25, 2622-2626.	10.1	93
103	A Selfâ€Powered and Reusable Biocomputing Security Keypad Lock System Based on Biofuel Cells. Chemistry - A European Journal, 2010, 16, 7719-7724.	3.3	40
104	Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosensors and Bioelectronics, 2010, 25, 1902-1907.	10.1	70
105	A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosensors and Bioelectronics, 2010, 25, 2189-2193.	10.1	49
106	Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide. Analytical Chemistry, 2010, 82, 4283-4287.	6.5	92
107	Solid-State Probe Based Electrochemical Aptasensor for Cocaine: A Potentially Convenient, Sensitive, Repeatable, and Integrated Sensing Platform for Drugs. Analytical Chemistry, 2010, 82, 1556-1563.	6.5	139
108	Aptamer-Controlled Biofuel Cells in Logic Systems and Used as Self-Powered and Intelligent Logic Aptasensors. Journal of the American Chemical Society, 2010, 132, 2172-2174.	13.7	130

#	Article	IF	CITATIONS
109	Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells. Talanta, 2010, 81, 444-448.	5.5	92
110	To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chemical Communications, 2010, 46, 7172.	4.1	40
111	An IMP-Reset gate-based reusable and self-powered "smart―logic aptasensor on a microfluidic biofuel cell. Lab on A Chip, 2010, 10, 2932.	6.0	34
112	Controlled Synthesis of Largeâ€Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry - A European Journal, 2009, 15, 6116-6120.	3.3	739
113	Highly ordered mesoporous carbons-based glucose/O2 biofuel cell. Biosensors and Bioelectronics, 2009, 24, 2904-2908.	10.1	70
114	Ordered magnetic core–manganese oxide shell nanostructures and their application in water treatment. Journal of Materials Chemistry, 2009, 19, 7030.	6.7	110
115	Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry, 2009, 81, 5603-5613.	6.5	1,635
116	Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosensors and Bioelectronics, 2008, 24, 442-447.	10.1	164
117	The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochemistry Communications, 2008, 10, 859-863.	4.7	131
118	Magnetic control of bioelectrocatalytic processes based on assembled iron oxide particles. Electrochemistry Communications, 2008, 10, 1172-1175.	4.7	6
119	Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. Electrochimica Acta, 2008, 53, 4176-4184.	5.2	74
120	Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbonâ^'Fullerene System. Analytical Chemistry, 2008, 80, 4642-4650.	6.5	115
121	Electrochemical Behavior ofl-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode. Analytical Chemistry, 2007, 79, 5328-5335.	6.5	302
122	Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode. Analytica Chimica Acta, 2007, 587, 124-131.	5.4	141
123	Special Issue for Pointâ€ofâ€Care Testing. Electroanalysis, 0, , .	2.9	0