List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253339/publications.pdf Version: 2024-02-01

		57758	98798
243	7,074	44	67
papers	citations	h-index	g-index
251	251	251	6905
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Titanosilicate Epoxidation Catalysts: A Review of Challenges and Opportunities. ChemCatChem, 2022, 14, .	3.7	26
2	Carbon black-polydopamine-ruthenium composite as a recyclable boomerang catalyst for the oxidative cleavage of oleic acid. Chemical Engineering Journal, 2022, 427, 131820.	12.7	14
3	Nanocrystalline rhenium-doped TiO ₂ : an efficient catalyst in the one-pot conversion of carbohydrates into levulinic acid. The synergistic effect between BrAֻnsted and Lewis acid sites. Catalysis Science and Technology, 2022, 12, 167-180.	4.1	4
4	Influence of zirconia addition in TiO ₂ and TiO ₂ –CeO ₂ aerogels on the textural, structural and catalytic properties of supported vanadia in chlorobenzene oxidation. RSC Advances, 2022, 12, 10924-10932.	3.6	2
5	Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts, 2022, 12, 507.	3.5	11
6	Active epoxidation bipyridine-oxodiperoxotungstate catalysts. Molecular Catalysis, 2022, 528, 112479.	2.0	2
7	Hydrophobic titania-silica mixed oxides for the catalytic epoxidation of cyclooctene. Catalysis Today, 2021, 363, 128-136.	4.4	20
8	Insights on hydrogen bond assisted solvent selection in certain acid–base heterogeneous catalysis through acceptor and donor numbers. Catalysis Science and Technology, 2021, 11, 1345-1357.	4.1	9
9	Mesoporous Methyl-Functionalized Titanosilicate Produced by Aerosol Process for the Catalytic Epoxidation of Olefins. Catalysts, 2021, 11, 196.	3.5	11
10	Alkylation of resorcinol with tertiary butanol over zeolite catalysts: Shape selectivity vs acidity. Catalysis Communications, 2021, 152, 106291.	3.3	5
11	Temporal post-discharge reactions effect on the oxidative catalytic properties of plasma-synthesized α-MnO2 nanorods. Applied Catalysis A: General, 2021, 616, 118109.	4.3	1
12	Abiotic Transformation of H ₂ and CO ₂ into Methane on a Natural Chromitite Rock. ACS Earth and Space Chemistry, 2021, 5, 1695-1708.	2.7	3
13	Influence of Operational Parameters on Photocatalytic Degradation of Linuron in Aqueous TiO2 Pillared Montmorillonite Suspension. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 673-685.	1.1	2
14	Effect of secondary additives on the properties of vanadium‑aluminum mixed oxide tableted catalysts used in the oxidation of propane. Powder Technology, 2021, 387, 181-196.	4.2	8
15	Plasma-induced redox reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation. Applied Catalysis B: Environmental, 2020, 260, 118159.	20.2	40
16	Hierarchical micro-/macroporous TS-1 zeolite epoxidation catalyst prepared by steam assisted crystallization. Microporous and Mesoporous Materials, 2020, 293, 109801.	4.4	37
17	Hollow zeolite microspheres as a nest for enzymes: a new route to hybrid heterogeneous catalysts. Chemical Science, 2020, 11, 954-961.	7.4	52
18	Effect of the surface properties of Me2+/Al layered double hydroxides synthesized from aluminum saline slag wastes on the adsorption removal of drugs. Microporous and Mesoporous Materials, 2020, 309, 110560.	4.4	29

#	Article	IF	CITATIONS
19	Role of Lewis and BrÃ,nsted acid sites in resorcinol <i>tert</i> -butylation over heteropolyacid-based catalysts. Catalysis Science and Technology, 2020, 10, 7984-7997.	4.1	3
20	Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis. ChemCatChem, 2020, 12, 5838-5857.	3.7	79
21	Ammonium-substitution for successfully activating the bulk of Keggin acid salts in 1-butanol dehydration. Catalysis Science and Technology, 2020, 10, 6244-6256.	4.1	4
22	Influence of Site Pairing in Hydrophobic Silica-Supported Sulfonic Acid Bifunctional Catalysts. Langmuir, 2020, 36, 13743-13751.	3.5	10
23	Efficient N, Fe Co-Doped TiO2 Active under Cost-Effective Visible LED Light: From Powders to Films. Catalysts, 2020, 10, 547.	3.5	15
24	Alumina grafted SBA-15 sustainable bifunctional catalysts for direct cross-coupling of benzylic alcohols to diarylmethanes. Catalysis Science and Technology, 2020, 10, 2583-2592.	4.1	4
25	Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution. Materials Today Energy, 2019, 13, 312-322.	4.7	28
26	Production of high surface area mayenite (C12A7) via an assisted solution combustion synthesis (SCS) toward catalytic soot oxidation. Materials Research Bulletin, 2019, 119, 110542.	5.2	10
27	Synthetically Tuned Pd-Based Intermetallic Compounds and their Structural Influence on the O ₂ Dissociation in Benzylamine Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 37602-37616.	8.0	16
28	Aerosol Route to TiO ₂ –SiO ₂ Catalysts with Tailored Pore Architecture and High Epoxidation Activity. Chemistry of Materials, 2019, 31, 1610-1619.	6.7	50
29	Major non-volatile intermediate products of photo-catalytic decomposition of ethylene. Journal of Catalysis, 2019, 374, 328-334.	6.2	3
30	Sulfated zirconia: an efficient catalyst for the Friedel–Crafts monoalkylation of resorcinol with methyl tertiary butyl ether to 4-tertiary butylresorcinol. New Journal of Chemistry, 2019, 43, 7733-7742.	2.8	20
31	Assessing the dispersion of supported H3PW12O40 catalysts: No longer a hurdle thanks to in situ IR upon pyridine adsorption. Applied Catalysis A: General, 2019, 578, 116-121.	4.3	7
32	Production and testing of technical catalysts based on MnO2 for the abatement of aromatic volatile compounds at the laboratory and pilot plant scales. Catalysis Today, 2019, 338, 81-92.	4.4	8
33	"Click―Silicaâ€Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity. Chemistry - A European Journal, 2019, 25, 6753-6762.	3.3	16
34	V ₂ O ₅ /TiO ₂ and V ₂ O ₅ /TiO ₂ –SO ₄ ^{2â^'} catalysts for the total oxidation of chlorobenzene: one-step sol–gel preparation <i>vs.</i> two-step impregnation. Catalysis Science and Technology, 2019, 9, 2344-2350.	4.1	15
35	Macrocellular Titanosilicate Monoliths as Highly Efficient Structured Olefin Epoxidation Catalysts. ChemCatChem, 2019, 11, 1593-1597.	3.7	11
36	Adsorption of picloram on clays nontronite, illite and kaolinite: equilibrium and herbicide-clays surface complexes. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 281-289.	1.5	8

#	Article	IF	CITATIONS
37	Differential charging effects from impurities in pyrolytic graphite. Applied Surface Science, 2019, 476, 174-181.	6.1	5
38	Producing oxide catalysts by exploiting the chemistry of gliding arc atmospheric plasma in humid air. Catalysis Today, 2019, 334, 104-112.	4.4	14
39	Improving the selectivity to 4-tert-butylresorcinol by adjusting the surface chemistry of heteropolyacid-based alkylation catalysts. Journal of Catalysis, 2018, 359, 198-211.	6.2	26
40	FeOx-kaolinite catalysts prepared via a plasma-assisted hydrolytic precipitation approach for Fenton-like reaction. Microporous and Mesoporous Materials, 2018, 255, 148-155.	4.4	12
41	Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catalysis Today, 2018, 302, 125-135.	4.4	44
42	Novel ceramic paper structures for diesel exhaust purification. Environmental Science and Pollution Research, 2018, 25, 35276-35286.	5.3	12
43	Mesoporous SiO2-TiO2 epoxidation catalysts: Tuning surface polarity to improve performance in the presence of water. Molecular Catalysis, 2018, 452, 123-128.	2.0	37
44	Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications. Materials, 2018, 11, 584.	2.9	48
45	Study of the gas-phase glycerol oxidehydration on systems based on transition metals (Co, Fe, V) and aluminium phosphate. Molecular Catalysis, 2018, 455, 68-77.	2.0	19
46	Nanostructured hybrid materials as precursors of mesoporous NiMo-based catalysts for the propane oxidative dehydrogenation. Microporous and Mesoporous Materials, 2017, 242, 200-207.	4.4	9
47	Gliding Arc Plasma Synthesis of MnO2 Nanorods for the Plasma-Catalytic Bleaching of AzoÃ ⁻ c Amaranth Red Dye. Topics in Catalysis, 2017, 60, 962-972.	2.8	15
48	Boron Nitride: A Support for Highly Active Heteropolyacids in the Methanol-to-DME Reaction. ACS Catalysis, 2017, 7, 4011-4017.	11.2	35
49	Lifetime of the H 3 PW 12 O 40 heteropolyacid in the methanol-to-DME process: A question of pre-treatment. Applied Catalysis A: General, 2017, 538, 174-180.	4.3	11
50	The inhibitor role of NH 3 on its synthesis process at low temperature, over Ru catalytic nanoparticles. Catalysis Today, 2017, 286, 85-100.	4.4	14
51	Elucidating and exploiting the chemistry of Keggin heteropolyacids in the methanol-to-DME conversion: enabling the bulk reaction thanks to operando Raman. Catalysis Science and Technology, 2017, 7, 817-830.	4.1	25
52	<i>Operando</i> Raman to Enhance the Methanol-to-DME Conversion Over Non-Thermally-Pretreated Keggin Heteropolyacids. Journal of Physical Chemistry C, 2017, 121, 556-566.	3.1	5
53	Keggin H ₃ PW ₁₂ O ₄₀ pore blockage by coke can be reversible in the gas phase methanol-to-DME reaction. Catalysis Science and Technology, 2017, 7, 6151-6160.	4.1	6
54	Raman monitoring of a catalytic system at work: Influence of the reactant on the sensitivity to laser-induced heating. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 151-159.	3.9	4

#	Article	IF	CITATIONS
55	Probing the Structural Changes and Redox Behavior of Mixed Molybdate Catalysts under Ammoxidation Conditions: An Operando Raman Spectroscopy Study. ChemCatChem, 2016, 8, 976-983.	3.7	15
56	Synergetic Behavior of TiO ₂ ‣upported Pd(<i>z</i>)Pt(1â^' <i>z</i>) Catalysts in the Green Synthesis of Methyl Formate. ChemCatChem, 2016, 8, 1157-1166.	3.7	11
57	New concepts in lowâ€ŧemperature catalytic hydrogenation and their implications for process intensification. Canadian Journal of Chemical Engineering, 2016, 94, 662-677.	1.7	5
58	Ordered and disordered evolution of the pore mesostructure in hybrid silica anti-reflective films obtained by one-pot self-assembly method. Thin Solid Films, 2016, 611, 117-124.	1.8	8
59	Self-assembled hybrid precursors towards more efficient propane ODH NiMoO ₄ catalysts. Catalysis Science and Technology, 2016, 6, 6046-6056.	4.1	11
60	Kinetics of hydrogen adsorption and mobility on Ru nanoparticles supported on alumina: Effects on the catalytic mechanism of ammonia synthesis. Journal of Catalysis, 2016, 344, 16-28.	6.2	29
61	Thermal treatment of plasma-synthesized goethite improves Fenton-like degradation of orange II dye. Environmental Chemistry Letters, 2016, 14, 515-519.	16.2	7
62	The Effect of Hydrophobicity on the Synthesis of Homogeneous and Nanostructured NiMo-Based Hybrid Materials. ChemistrySelect, 2016, 1, 4193-4196.	1.5	0
63	Influence of the acidity of oxidized Pd/silica–alumina catalysts on their performances in the Suzuki coupling. Journal of Molecular Catalysis A, 2016, 416, 47-55.	4.8	7
64	Understanding the growth of RuO2 colloidal nanoparticles over a solid support: An atomic force microscopy study. Catalysis Today, 2016, 259, 183-191.	4.4	7
65	Development of an Efficient Strategy for Coating TiO2 on Polyester–Cotton Fabrics for Bactericidal Applications. Topics in Catalysis, 2016, 59, 378-386.	2.8	6
66	Performance of platinum and gold catalysts supported on ceria–zirconia mixed oxide in the oxidation of chlorobenzene. Catalysis Today, 2015, 253, 172-177.	4.4	44
67	Bismuth molybdates prepared by solution combustion synthesis for the partial oxidation of propene. Catalysis Today, 2015, 257, 11-17.	4.4	23
68	In situ quartz crystal microbalance monitoring of the adsorption of polyoxometalate on a polyampholyte polymer matrix. Journal of Colloid and Interface Science, 2015, 445, 24-30.	9.4	7
69	New insights on the structure of the picloram–montmorillonite surface complexes. Journal of Colloid and Interface Science, 2015, 444, 115-122.	9.4	12
70	Behavior of cation-exchange resins employed as heterogeneous catalysts for esterification of oleic acid with trimethylolpropane. Applied Catalysis A: General, 2015, 504, 11-16.	4.3	33
71	Enhanced discolouration of methyl violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst. Journal of Environmental Chemical Engineering, 2015, 3, 953-960.	6.7	19
72	Insights in the mechanism of deposition and growth of RuO2 colloidal nanoparticles over alumina. Implications on the activity for ammonia synthesis. Applied Catalysis A: General, 2015, 502, 48-56.	4.3	13

#	Article	IF	CITATIONS
73	Non-thermal plasma synthesis of sea-urchin like α-FeOOH for the catalytic oxidation of Orange II in aqueous solution. Applied Catalysis B: Environmental, 2015, 176-177, 99-106.	20.2	65
74	Disclosing the synergistic mechanism in the catalytic activity of different-sized Ru nanoparticles for ammonia synthesis at mild reaction conditions. Catalysis Today, 2015, 251, 88-95.	4.4	18
75	Catalytic ceramic papers for diesel soot oxidation: A spray method for enhanced performance. Catalysis Communications, 2015, 72, 116-120.	3.3	16
76	Magnetic nanoparticles: Improving chemical stability via silica coating and organic grafting with silanes for acidic media catalytic reactions. Applied Catalysis A: General, 2015, 505, 200-212.	4.3	27
77	Complementarity of heterogeneous and homogeneous catalysis for oleic acid esterification with trimethylolpropane over ion-exchange resins. Catalysis Communications, 2015, 59, 222-225.	3.3	17
78	Catalysts based on pillared clays for the oxidation of chlorobenzene. Catalysis Today, 2015, 246, 15-27.	4.4	46
79	Role of shaping in the preparation of heterogeneous catalysts: Tableting and slip-casting of oxidation catalysts. Catalysis Today, 2015, 246, 81-91.	4.4	25
80	Study of mesoporous CdS-quantum-dot-sensitized TiO ₂ films by using X-ray photoelectron spectroscopy and AFM. Beilstein Journal of Nanotechnology, 2014, 5, 68-76.	2.8	61
81	Controlling the dispersion of supported polyoxometalate heterogeneous catalysts: impact of hybridization and the role of hydrophilicity–hydrophobicity balance and supramolecularity. Beilstein Journal of Nanotechnology, 2014, 5, 1749-1759.	2.8	8
82	11th International Symposium on the Scientific Bases for the Preparation of Heterogeneous Catalysts (PREPA11; Louvain-la-Neuve, Belgium, July 6–10, 2014). Green Processing and Synthesis, 2014, 3, 177-178.	3.4	0
83	Taking advantage of a priori unwanted catalysts modifications. Applied Catalysis A: General, 2014, 474, 51-58.	4.3	0
84	Elaboration and characterization of sulfated and unsulfated V2O5/TiO2 nanotubes catalysts for chlorobenzene total oxidation. Applied Catalysis B: Environmental, 2014, 147, 58-64.	20.2	74
85	Mesoporous lithium vanadium oxide as a thin film electrode for lithium-ion batteries: comparison between direct synthesis of LiV ₂ O ₅ and electrochemical lithium intercalation in V ₂ O ₅ . Journal of Materials Chemistry A, 2014, 2, 5809-5815.	10.3	25
86	Theoretical condition for transparency in mesoporous layered optical media: Application to switching of hygrochromic coatings. Applied Physics Letters, 2014, 104, 023704.	3.3	17
87	Low temperature oxidation of methanol to methyl formate over Pd nanoparticles supported on Î ³ -Fe2O3. Catalysis Science and Technology, 2014, 4, 738.	4.1	30
88	Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay. Desalination and Water Treatment, 2014, 52, 2654-2661.	1.0	51
89	Immobilizing heteropolyacids on zirconia-modified silica as catalysts for oleochemistry transesterification and esterification reactions. Journal of Catalysis, 2014, 320, 1-8.	6.2	60
90	Oxidation of methanol to methyl formate over supported Pd nanoparticles: insights into the reaction mechanism at low temperature. Catalysis Science and Technology, 2014, 4, 3298-3305.	4.1	32

#	Article	IF	CITATIONS
91	Total oxidation of propane with a nano-RuO2/TiO2 catalyst. Applied Catalysis A: General, 2014, 481, 11-18.	4.3	47
92	Surface Modification of Smectite Clay Induced by Non-thermal Gliding Arc Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2013, 33, 707-723.	2.4	48
93	Plasma-Assisted Synthesis of TiO2 Nanorods by Gliding Arc Discharge Processing at Atmospheric Pressure for Photocatalytic Applications. Plasma Chemistry and Plasma Processing, 2013, 33, 725-735.	2.4	41
94	In Vitro Lipolysis and Intestinal Transport of β-Arteether-Loaded Lipid-Based Drug Delivery Systems. Pharmaceutical Research, 2013, 30, 2694-2705.	3.5	16
95	Hybrid peroxotungstophosphate organized catalysts highly active and selective in alkene epoxidation. Catalysis Communications, 2013, 37, 80-84.	3.3	24
96	An Alternative Method for the Incorporation of Silver in Ag-VOx/TiO2 Catalysts for the Total Oxidation of Benzene. Topics in Catalysis, 2013, 56, 1867-1874.	2.8	8
97	Influence of vanadium loading on the activity and selectivity of V/Al0.5Ga0.5PO4 catalysts in the propane ammoxidation. Catalysis Today, 2013, 203, 40-47.	4.4	5
98	Understanding the molecular basics behind catalyst shaping: Preparation of suspensions of vanadium–aluminum mixed (hydr)oxides. Applied Catalysis A: General, 2013, 468, 190-203.	4.3	15
99	NiMoO4 preparation from polyampholytic hybrid precursors: Benefiting of the memory effect in the oxidative dehydrogenation of propane. Catalysis Today, 2013, 203, 24-31.	4.4	11
100	Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties. Journal of Materials Chemistry C, 2013, 1, 6202.	5.5	39
101	Direct Methyl Formate Formation from Methanol over Supported Palladium Nanoparticles at Low Temperature. ChemCatChem, 2013, 5, 339-348.	3.7	20
102	Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route. Journal of Catalysis, 2013, 301, 233-241.	6.2	53
103	Supramolecular Organization in Organic–Inorganic Heterogeneous Hybrid Catalysts Formed from Polyoxometalate and Poly(ampholyte) Polymer. Langmuir, 2013, 29, 4388-4395.	3.5	39
104	Structural changes in FeMFI during its activation for the direct ammoxidation of propane. Catalysis Science and Technology, 2013, 3, 1634-1643.	4.1	1
105	Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation. Materials, 2013, 6, 3556-3570.	2.9	21
106	Calibration of the Xâ€Ray Photoelectron Spectroscopy Binding Energy Scale for the Characterization of Heterogeneous Catalysts: Is Everything Really under Control?. ChemPhysChem, 2013, 14, 3618-3626.	2.1	60
107	Influence of the Preparation Method on Catalytic Properties of Pd/TiO2 Catalysts in the Reaction of Partial Oxidation of Methanol. Current Catalysis, 2013, 2, 27-34.	0.5	6
108	Effect of support on V2O5 catalytic activity in chlorobenzene oxidation. Applied Catalysis A: General, 2012, 447-448, 1-6.	4.3	32

#	Article	IF	CITATIONS
109	Influence of the impregnation order on the synergy between Ag and V2O5/TiO2 catalysts in the total oxidation of Cl-aromatic VOC. Catalysis Today, 2012, 192, 2-9.	4.4	15
110	Glycerol acetylation catalysed by ion exchange resins. Catalysis Today, 2012, 195, 14-21.	4.4	110
111	Tuning the selectivity and sensitivity of mesoporous dielectric multilayers by modifiying the hydrophobic–hydrophilic balance of the silica layer. Journal of Materials Chemistry, 2012, 22, 22526.	6.7	21
112	Establishing the Role of Graphite as a Shaping Agent of Vanadium–Aluminum Mixed (Hydr)oxides and Their Physicochemical Properties and Catalytic Functionalities. ACS Catalysis, 2012, 2, 322-336.	11.2	21
113	Préparation, caractérisation et réactivité de l'acide 1-vanado-11-molybdo-phosphorique supporté s des matériaux silicatés mésoporeux dans l'oxydation du propène. Comptes Rendus Chimie, 2012, 15, 658-668.	sur 0.5	1
114	Porosity control and surface sensitivity of titania/silica mesoporous multilayer coatings: applications to optical Bragg resonance tuning and molecular sensing. Journal of Materials Chemistry, 2012, 22, 25302.	6.7	21
115	Supporting the Dawson (NH4)6P2Mo18O62 Heteropoly Compound: Controlling Its Molecular Behaviour to Enhance Its Catalytic Activity in the Propene Oxidation. European Journal of Inorganic Chemistry, 2012, 2012, 2792-2801.	2.0	10
116	Tuning the Acid/Metal Balance of Carbon Nanofiberâ€Supported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2012, 5, 1549-1558.	6.8	131
117	A non-hydrolytic sol–gel route to highly active MoO3–SiO2–Al2O3 metathesis catalysts. Catalysis Science and Technology, 2012, 2, 1157.	4.1	42
118	CuxCryOz mixed oxide as a promising support for gold – The effect of Au loading method on the effectiveness in oxidation reactions. Catalysis Today, 2012, 187, 48-55.	4.4	16
119	Optimization of the preparation procedure of cobalt modified silicas as catalysts in methanol decomposition. Applied Catalysis A: General, 2012, 417-418, 209-219.	4.3	25
120	Improving the selectivity to HDS in the HDT of synthetic FCC naphtha using sodium doped amorphous aluminosilicates as support of CoMo catalysts. Applied Catalysis A: General, 2012, 421-422, 48-57.	4.3	20
121	Photocatalytic degradation of Rhodamine 6G on mesoporous titania films: Combined effect of texture and dye aggregation forms. Applied Catalysis B: Environmental, 2012, 115-116, 276-284.	20.2	49
122	Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Applied Catalysis B: Environmental, 2012, 123-124, 27-35.	20.2	95
123	Characterization of H3+xPMo12â [~] 'xVxO40 heteropolyacids supported on HMS mesoporous molecular sieve and their catalytic performance in propene oxidation. Microporous and Mesoporous Materials, 2012, 154, 153-163.	4.4	23
124	Low Temperatureâ€High Selectivity Process over Supported Pd Nanoparticles in Partial Oxidation of Methanol. ChemCatChem, 2012, 4, 72-75.	3.7	9
125	Oneâ€Pot Aerosol Route to MoO ₃ â€SiO ₂ â€Al ₂ O ₃ Catalysts with Ordered Super Microporosity and High Olefin Metathesis Activity. Angewandte Chemie - International Edition, 2012, 51, 2129-2131.	13.8	101
126	Influence of Graphite as a Shaping Agent of Bi Molybdate Powders on Their Mechanical, Physicochemical, and Catalytic Properties. Industrial & Engineering Chemistry Research, 2011, 50, 5467-5477.	3.7	15

#	Article	IF	CITATIONS
127	Sol–gel derived V2O5–TiO2 mesoporous materials as catalysts for the total oxidation of chlorobenzene. Catalysis Communications, 2011, 15, 1-5.	3.3	42
128	Benzimidazole adsorption on the external and interlayer surfaces of raw and treated montmorillonite. Applied Clay Science, 2011, 53, 366-373.	5.2	38
129	NbVO ₅ Mesoporous Thin Films by Evaporation Induced Micelles Packing: Pore Size Dependence of the Mechanical Stability upon Thermal Treatment and Li Insertion/Extraction. Chemistry of Materials, 2011, 23, 4124-4131.	6.7	17
130	Effect of compressive stress inducing a band gap narrowing on the photoinduced activities of sol–gel TiO2 films. Thin Solid Films, 2011, 520, 1147-1154.	1.8	38
131	Flame-made MoO3/SiO2–Al2O3 metathesis catalysts with highly dispersed and highly active molybdate species. Journal of Catalysis, 2011, 277, 154-163.	6.2	85
132	Necessary conditions for a synergy between Ag and V2O5 in the total oxidation of chlorobenzene. Catalysis Today, 2011, 175, 177-182.	4.4	23
133	Evaluation of PCDD/F oxidation catalysts: Confronting studies on model molecules with tests on PCDD/F-containing gas stream. Chemosphere, 2011, 82, 1337-1342.	8.2	42
134	Genesis of active and inactive species during the preparation of MoO3/SiO2–Al2O3 metathesis catalysts via wet impregnation. Catalysis Today, 2011, 169, 60-68.	4.4	45
135	Glycerol acetylation on sulphated zirconia in mild conditions. Catalysis Today, 2011, 167, 56-63.	4.4	74
136	Avoiding the deactivation of sulphated MoOx/TiO2 catalysts in the photocatalytic cyclohexane oxidative dehydrogenation by a fluidized bed photoreactor. Applied Catalysis A: General, 2011, 394, 71-78.	4.3	38
137	Interpretation of the catalytic functionalities of CoMo/ASA FCC-naphtha-HDT catalysts based on its acid properties. Journal of Molecular Catalysis A, 2011, 335, 112-120.	4.8	11
138	Opposite effect of Al on the performances of MoO3/SiO2-Al2O3 catalysts in the metathesis and in the partial oxidation of propene. Applied Catalysis A: General, 2011, 391, 78-85.	4.3	44
139	Effect of the chromium precursor nature on the physicochemical and catalytic properties of Cr–ZSM-5 catalysts: Application to the ammoxidation of ethylene. Journal of Molecular Catalysis A, 2011, 339, 8-16.	4.8	34
140	Preparation of MoO3/SiO2–Al2O3 metathesis catalysts via wet impregnation with different Mo precursors. Journal of Molecular Catalysis A, 2011, 340, 65-76.	4.8	70
141	X-ray photoelectron spectroscopy study of nitrided zeolites. Studies in Surface Science and Catalysis, 2010, 175, 831-834.	1.5	0
142	Characterization and reactivity of aerogel sulfated zirconia-ceria catalyst for n-hexane isomerization. Journal of Porous Materials, 2010, 17, 545-551.	2.6	8
143	Catalytic combustion of toluene over cluster-derived gold/iron catalysts. Applied Catalysis A: General, 2010, 372, 138-146.	4.3	52
144	Characterization of alumina- and niobia-supported gold catalysts used for oxidation of glycerol. Applied Catalysis A: General, 2010, 384, 70-77.	4.3	42

ERIC GAIGNEAUX

#	Article	IF	CITATIONS
145	Preparation and characterization of HMS supported 11-molybdo-vanado-phosphoric acid for selective oxidation of propylene. Microporous and Mesoporous Materials, 2010, 130, 103-114.	4.4	40
146	One-step non-hydrolytic sol–gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation. Applied Catalysis B: Environmental, 2010, 94, 38-45.	20.2	72
147	Factors controlling the development of the HYD route of desulfurization of DBT over γ-alumina supported Pt and Pd catalysts. Catalysis Today, 2010, 150, 186-195.	4.4	13
148	Operando investigation of the catalytic behavior of Wells–Dawson heteropolycompounds in the oxidation of propene. Catalysis Today, 2010, 155, 227-240.	4.4	9
149	Flame-made vs. wet-impregnated vanadia/titania in the total oxidation of chlorobenzene: Possible role of VOx species. Catalysis Today, 2010, 157, 198-203.	4.4	39
150	Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol–gel route. Catalysis Today, 2010, 157, 125-130.	4.4	67
151	New Nb and Ta–FAU zeolites—Direct synthesis, characterisation and surface properties. Catalysis Today, 2010, 158, 170-177.	4.4	39
152	Design of nano-sized FeOx and Au/FeOx catalysts for total oxidation of VOC and preferential oxidation of CO. Studies in Surface Science and Catalysis, 2010, 175, 785-788.	1.5	4
153	Preparation of CMI-1 supported H3+xPMo12-xVxO40 for the selective oxidation of propylene. Studies in Surface Science and Catalysis, 2010, , 665-669.	1.5	2
154	Ag-V2O5/TiO2 total oxidation catalyst: autocatalytic removal of the surfactant and synergy between silver and vanadia. Studies in Surface Science and Catalysis, 2010, 175, 805-809.	1.5	3
155	Supported Pd nanoparticles prepared by a modified water-in-oil microemulsion method. Studies in Surface Science and Catalysis, 2010, , 789-792.	1.5	15
156	Determination of the Size of Supported Pd Nanoparticles by X-ray Photoelectron Spectroscopy. Comparison with X-ray Diffraction, Transmission Electron Microscopy, and H ₂ Chemisorption Methods. Journal of Physical Chemistry C, 2010, 114, 16677-16684.	3.1	93
157	Thermal Spreading As an Alternative for the Wet Impregnation Method: Advantages and Downsides in the Preparation of MoO3/SiO2â ^{~?} Al2O3 Metathesis Catalysts. Journal of Physical Chemistry C, 2010, 114, 18664-18673.	3.1	42
158	Nitrided Zeolites: A Spectroscopic Approach for the Identification and Quantification of Incorporated Nitrogen Species. Journal of Physical Chemistry C, 2010, 114, 4527-4535.	3.1	21
159	Incorporation of group five elements into the faujasite structure. Studies in Surface Science and Catalysis, 2010, , 445-448.	1.5	7
160	Study of the selectivity in FCC naphtha hydrotreating by modifying the acid–base balance of CoMo/γ-Al2O3 catalysts. Applied Catalysis A: General, 2010, 390, 59-70.	4.3	31
161	Facile preparation of MoO3/SiO2-Al2O3 olefin metathesis catalysts by thermal spreading. Studies in Surface Science and Catalysis, 2010, , 581-585.	1.5	23
162	TiO2 doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range. Physical Chemistry Chemical Physics, 2010, 12, 11325.	2.8	18

#	Article	IF	CITATIONS
163	Development of the HYD route of hydrodesulfurization of dibenzothiophenes over Pd–Pt/γ-Al2O3 catalysts. Journal of Catalysis, 2009, 267, 129-139.	6.2	36
164	Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chemistry - A European Journal, 2009, 15, 3920-3935.	3.3	450
165	Revisiting the Behaviour of Vanadia-Based Catalysts in the Abatement of (Chloro)-Aromatic Pollutants: Towards an Integrated Understanding. Topics in Catalysis, 2009, 52, 501-516.	2.8	62
166	Reorganization of Wells–Dawson Heteropoly Compounds During the Oxygen Assisted Catalytic Reaction of 2-butanol: Effect of the Oxido-Reduction Strength of the Working Conditions. Topics in Catalysis, 2009, 52, 1232-1241.	2.8	4
167	Effects of the Nitridation of Y and USY Zeolites on their Catalytic Activity for the Base Catalyzed Knoevenagel Condensation. Topics in Catalysis, 2009, 52, 1541-1548.	2.8	17
168	Photocatalytic cyclohexane oxidehydrogenation on sulphated MoOx/γ-Al2O3 catalysts. Catalysis Today, 2009, 141, 367-373.	4.4	28
169	Structural rearrangement and catalytic properties of the Wells–Dawson (NH4)6P2Mo18O62 heteropolycompound in the 2-butanol reaction. Applied Catalysis A: General, 2009, 357, 115-124.	4.3	12
170	Design of SiO ₂ â^'Al ₂ O ₃ â^'MoO ₃ Metathesis Catalysts by Nonhydrolytic Solâ^'Gel. Chemistry of Materials, 2009, 21, 2817-2824.	6.7	70
171	Elucidation of deactivation or resistance mechanisms of CrO _{<i>x</i>} , VO _{<i>x</i>} and MnO _{<i>x</i>} supported phases in the total oxidation of chlorobenzene via ToFâ€BIMS and XPS analyses. Surface and Interface Analysis, 2008, 40, 231-236.	1.8	56
172	A New Bioâ€Inspired Route to Metalâ€Nanoparticleâ€Based Heterogeneous Catalysts. Small, 2008, 4, 1806-181	2.10.0	31
173	Keywords Index Small 12/2008. Small, 2008, 4, 2300-2300.	10.0	0
174	Effect of the nature of the precursor on the morphology of MoO3 thin films spin-coated on Si (100). Thin Solid Films, 2008, 516, 2904-2912.	1.8	10
175	Abatement of model molecules for dioxin total oxidation on V2O5–WO3/TiO2 catalysts: The case of substituted oxygen-containing VOC. Journal of Molecular Catalysis A, 2008, 289, 38-43.	4.8	40
176	Effect of the evacuation mode of solvent on the textural, structural and catalytic properties of sulfated zirconia doped with cerium. Studies in Surface Science and Catalysis, 2008, 174, 493-496.	1.5	5
177	Ag/SiO2, Cu/SiO2 and Pd/SiO2 cogelled xerogel catalysts for benzene combustion: Relationships between operating synthesis variables and catalytic activity. Catalysis Communications, 2007, 8, 1244-1248.	3.3	46
178	On the structure-sensitivity of 2-butanol dehydrogenation over Cu/SiO2 cogelled xerogel catalysts. Catalysis Communications, 2007, 8, 2032-2036.	3.3	21
179	Formation of ZSMâ€22 Zeolite Catalytic Particles by Fusion of Elementary Nanorods. Chemistry - A European Journal, 2007, 13, 10070-10077.	3.3	77
180	Bismuth molybdates model catalysts with controlled crystallinities spin-coated on Si (100). Catalysis Today, 2007, 128, 145-152.	4.4	8

#	Article	IF	CITATIONS
181	Parameters influencing the synergetic effect induced by vanadium incorporation on non-conventional (Al)(Ga)PO supports for the propane ammoxidation. Catalysis Today, 2007, 128, 168-175.	4.4	4
182	Total oxidation of Cl-containing VOCs over mixed heteropoly compounds derived catalysts. Catalysis Today, 2007, 128, 208-215.	4.4	5
183	The surface and catalytic properties of titania-supported mixed PMoV heteropoly compounds for total oxidation of chlorobenzene. Applied Catalysis A: General, 2007, 319, 14-24.	4.3	36
184	The role of crystalline structure of molybdenum oxide catalysts onto the activity and stability in sulfoxidation of thioethers. Applied Catalysis A: General, 2007, 325, 283-289.	4.3	4
185	Promoter role of V2O5 on vanadium supported Al0.5Ga0.5PO4 catalysts during propane ammoxidation. Applied Catalysis A: General, 2007, 325, 296-302.	4.3	9
186	New supported vanadia catalysts for oxidation reactions prepared by sputter deposition. Journal of Catalysis, 2007, 245, 156-172.	6.2	30
187	Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 2007, 70, 360-369.	20.2	78
188	Investigation of the preparation and activity of gold catalysts in the total oxidation of n-hexane. Applied Catalysis B: Environmental, 2007, 70, 406-416.	20.2	40
189	On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene. Applied Catalysis B: Environmental, 2007, 74, 223-232.	20.2	80
190	Tuning the selectivity of MoOx supported catalysts for cyclohexane photo oxidehydrogenation. Catalysis Today, 2007, 128, 251-257.	4.4	36
191	Spin-coating of Mixed Citrate Complexes as a Versatile Route to Prepare Films of Transition Metal Multi-element Oxide Model Catalysts with Controlled Formulation and Crystalline Structure. Studies in Surface Science and Catalysis, 2006, 162, 745-752.	1.5	2
192	Comparative study of the sulfur loss in the xerogel and aerogel sulfated zirconia calcined at different temperatures: effect on n-hexane isomerization. Studies in Surface Science and Catalysis, 2006, 162, 953-960.	1.5	18
193	Toluene oxidation in a plasma-catalytic system. Journal of Applied Physics, 2006, 99, 123301.	2.5	40
194	Nitridation of ultrastable Y zeolite: Influence of experimental parameters. Studies in Surface Science and Catalysis, 2006, 162, 857-864.	1.5	1
195	Parameters controlling the scaling-up of a V-Al oxynitride catalyst for the ammoxidation of propane. Studies in Surface Science and Catalysis, 2006, 162, 187-194.	1.5	7
196	Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene. Catalysis Today, 2006, 112, 165-168.	4.4	64
197	High surface area Mo–V–Te–Nb–O catalysts: Preparation, characterization and catalytic behaviour in ammoxidation of propane. Catalysis Today, 2006, 112, 139-142.	4.4	7
198	Extent of the participation of lattice oxygen from Î ³ -MnO2 in VOCs total oxidation: Influence of the VOCs nature. Catalysis Today, 2006, 117, 350-355.	4.4	74

#	Article	IF	CITATIONS
199	The influence of the hydrogen origin at the surface of Mo suboxide during the deoxygenation of carboxylic acid. Catalysis Today, 2006, 112, 130-133.	4.4	5
200	The deoxygenation of benzoic acid as a probe reaction to determine the impact of superficial oxygen vacancies (isolated or twin) on the oxidation performances of Mo-based oxide catalysts. Catalysis Today, 2006, 117, 46-52.	4.4	8
201	Bifunctional catalytic isomerization of decane over MTT-type aluminosilicate zeolite crystals with siliceous rim. Journal of Catalysis, 2006, 239, 451-459.	6.2	36
202	Nanostructured Pd/C catalysts prepared by grafting of model carboxylate complexes onto functionalized carbon. Journal of Catalysis, 2006, 243, 239-251.	6.2	53
203	Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics. Applied Catalysis B: Environmental, 2006, 66, 1-9.	20.2	140
204	Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics. Applied Catalysis B: Environmental, 2006, 66, 10-22.	20.2	112
205	Supported vanadium oxide nanoparticles: effect of preparation method, support and type of precursor on the catalytic performances in the ODH of methanol to formaldehyde. Studies in Surface Science and Catalysis, 2006, , 697-704.	1.5	4
206	Preparation of Mo-V-Te-Nb mixed oxides using the template route. Studies in Surface Science and Catalysis, 2006, , 769-776.	1.5	0
207	Positive effect of NO on the performances of VO/TiO-based catalysts in the total oxidation abatement of catalysis, 2005, 230, 493-498.	6.2	98
208	Evidence for the participation of lattice nitrogen from vanadium aluminum oxynitrides in propane ammoxidation. Journal of Catalysis, 2005, 232, 152-160.	6.2	42
209	Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 2005, 61, 12-20.	20.2	126
210	Coupling the deoxygenation of benzoic acid with the oxidation of propylene on a Co molybdate catalyst. Journal of Molecular Catalysis A, 2005, 237, 9-16.	4.8	10
211	Modulation of selective sites by introduction of N2O, CO2 and H2 as gaseous promoters into the feed during oxidation reactions. Catalysis Today, 2005, 99, 217-226.	4.4	20
212	Skeletal isomerization of octadecane on bifunctional ZSM-23 zeolite catalyst. Catalysis Letters, 2005, 100, 235-242.	2.6	42
213	Probing the reduction state of Mo oxide catalysts by the deoxygenation of carboxylic acid. Catalysis Today, 2004, 91-92, 111-116.	4.4	7
214	Sulfur resistance and high activity of hydrated manganese sulfate in the catalytic oxidation of methanethiola~†. Journal of Catalysis, 2004, 222, 255-259.	6.2	10
215	Modification of active catalytic sites with N2O and CO2 as gas promoters during oxidation reactions. Catalysis Today, 2004, 91-92, 27-31.	4.4	9
216	Influence of the reduction state in the bulk and at the surface on the behavior of MoO3 catalysts in the reaction of 2-butanol (dehydration versus oxidation) in the presence of oxygen. Catalysis Today, 2004, 91-92, 105-110.	4.4	12

ERIC GAIGNEAUX

#	Article	IF	CITATIONS
217	Sulfation Mechanism and Catalytic Behavior of Manganese Oxide in the Oxidation of Methanethiol. Journal of Physical Chemistry B, 2004, 108, 9989-10001.	2.6	24
218	The active role of CO2 at low temperature in oxidation processes: the case of the oxidative dehydrogenation of propane on NiMoO4 catalysts. Applied Catalysis A: General, 2003, 242, 187-203.	4.3	70
219	Interaction of N2O (as gas dope) with nickel molybdate catalysts during the oxidative dehydrogenation of propane to propylene. Applied Catalysis A: General, 2003, 247, 231-246.	4.3	27
220	An attempt to explain the role of CO2 and N2O as gas dopes in the feed in the oxidative dehydrogenation of propane. Catalysis Today, 2003, 81, 95-105.	4.4	33
221	Oxidation of 2-thiobenzyl-4,6-dimethyl-pyrimidine with hydrogen peroxide over Mo oxides, Mo suboxides and mixed Mo–Sb oxides catalysts. Catalysis Communications, 2003, 4, 5-9.	3.3	6
222	Operando resonance Raman spectroscopic characterisation of the oxidation state of palladium in Pd/l³-Al2O3catalysts during the combustion of methane. Physical Chemistry Chemical Physics, 2003, 5, 4394-4401.	2.8	64
223	Role of the mutual contamination in the synergetic effects between MoO3 and SnO2. Thermochimica Acta, 2002, 388, 27-40.	2.7	14
224	A crystalline SbRe2O6 catalyst active for selective ammoxidation of isobutylene and propene. Catalysis Letters, 2001, 71, 75-79.	2.6	9
225	Morphology of crystalline α-MoO3 thin films spin-coated on Si (100). Thin Solid Films, 2000, 374, 49-58.	1.8	33
226	New insights in the understanding of the behaviour and performances of bismuth molybdate catalysts in the oxygen-assisted dehydration of 2-butanol. Catalysis Today, 2000, 61, 279-285.	4.4	27
227	Novel Re–Sb–O catalysts for the selective oxidation of isobutane and isobutylene. Applied Catalysis A: General, 2000, 202, 251-264.	4.3	25
228	Dynamic phenomena and catalytic reactivities of oxide surfaces. Applied Catalysis A: General, 2000, 202, 265-283.	4.3	25
229	Title is missing!. Topics in Catalysis, 2000, 11/12, 185-193.	2.8	18
230	Influence of the precursor (nature and amount) on the morphology of MoO3 crystallites supported on silica. Studies in Surface Science and Catalysis, 2000, , 609-617.	1.5	8
231	Catalytic Behavior of Molybdenum Suboxides in the Selective Oxidation of Isobutene to Methacrolein. Journal of Physical Chemistry B, 2000, 104, 5724-5737.	2.6	27
232	Performance and Characterization of Novel Reâ~'Sbâ~'O Catalysts Active for the Selective Oxidation of Isobutylene to Methacrolein. Journal of Physical Chemistry B, 2000, 104, 2033-2043.	2.6	21
233	Application of scanning probe microscopies to oxide catalysts. Current Opinion in Solid State and Materials Science, 1998, 3, 343-353.	11.5	6
234	Catalytic Performances and Stability of Three Sbâ^'Moâ^'O Phases in the Selective Oxidation of Isobutene to Methacrolein. Journal of Physical Chemistry B, 1998, 102, 10542-10555.	2.6	23

#	Article	IF	CITATIONS
235	Spillover-induced synergetic effects and reconstructions of oxides surfaces during oxidation reactions. Studies in Surface Science and Catalysis, 1997, 112, 179-190.	1.5	7
236	Synergetic effects promoted by in operandi surface reconstructions of oxides. Studies in Surface Science and Catalysis, 1997, 110, 185-196.	1.5	8
237	Catalytic synergy via spillover at low temperature: the dehydration and dehydrogenation of sec-butanol in the presence of oxygen. Catalysis Today, 1997, 33, 151-160.	4.4	13
238	A New Application of Atomic Force Microscopy: The Visualization of Coke on Selective Oxidation Catalysts. Journal of Catalysis, 1997, 172, 247-251.	6.2	10
239	Atomic force and scanning electron microscopic investigation of the in operandi creation of selective sites on MoO3 mixed with α-Sb2O4 in the isobutene to methacrolein oxidation. Applied Surface Science, 1997, 121-122, 552-557.	6.1	24
240	Catalytic Cooperation via Spillover of Oxygen: Dehydration—Dehydrogenation of 2-Butanol over SnO ₂ —MoO ₃ Catalysts. ACS Symposium Series, 1996, , 330-346.	0.5	5
241	Epoxidation of cyclohexene by iron and cobalt phthalocyanines, study of the side reactions. Journal of Molecular Catalysis A, 1996, 109, 67-74.	4.8	27
242	Further on the mechanism of the synergy between MoO3 and α-Sb2O4 in the selective oxidation of isobutene to methacrolein: Reconstuction of MoO3 via spillover oxygen. Catalysis Today, 1996, 32, 37-46.	4.4	56
243	Highly active and stable Co (Co3O4)_Sm2O3 nano-crystallites derived from Sm2Co7 and SmCo5 intermetallic compounds in NH3 synthesis and CO2 conversion. Catalysis Science and Technology, 0, , .	4.1	0