Monika Bradl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oligodendrocytes: biology and pathology. Acta Neuropathologica, 2010, 119, 37-53.	7.7	669
2	Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo. Annals of Neurology, 2009, 66, 630-643.	5.3	504
3	Multiple sclerosis: experimental models and reality. Acta Neuropathologica, 2017, 133, 223-244.	7.7	396
4	Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathologica, 2013, 125, 815-827.	7.7	199
5	Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases. Frontiers in Immunology, 2017, 8, 529.	4.8	184
6	Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain, 2020, 143, 1431-1446.	7.6	173
7	The Activation Status of Neuroantigen-specific T Cells in the Target Organ Determines the Clinical Outcome of Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2004, 199, 185-197.	8.5	163
8	Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathologica, 2010, 120, 223-236.	7.7	150
9	Dysferlin Is a New Marker for Leaky Brain Blood Vessels in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2006, 65, 855-865.	1.7	144
10	Features of Human CD3+CD20+ T Cells. Journal of Immunology, 2016, 197, 1111-1117.	0.8	144
11	T-Cell Apoptosis in Inflammatory Brain Lesions. American Journal of Pathology, 1998, 153, 715-724.	3.8	141
12	Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. Journal of Neuroinflammation, 2017, 14, 208.	7.2	105
13	Pathogenic T cell responses against aquaporin 4. Acta Neuropathologica, 2011, 122, 21-34.	7.7	81
14	Progressive multiple sclerosis. Seminars in Immunopathology, 2009, 31, 455-465.	6.1	80
15	Neuromyelitis optica should be classified as an astrocytopathic disease rather than a demyelinating disease. Clinical and Experimental Neuroimmunology, 2012, 3, 58-73.	1.0	79
16	Pain in neuromyelitis optica—prevalence, pathogenesis and therapy. Nature Reviews Neurology, 2014, 10, 529-536.	10.1	77
17	Transient Axonal Injury in the Absence of Demyelination: A Correlate of Clinical Disease in Acute Experimental Autoimmune Encephalomyelitis. Acta Neuropathologica, 2006, 111, 539-547.	7.7	74
18	T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathologica Communications, 2013, 1, 85.	5.2	73

Monika Bradl

#	Article	IF	CITATIONS
19	Endoplasmic Reticulum Stress in PLP-Overexpressing Transgenic Rats: Gray Matter Oligodendrocytes Are More Vulnerable than White Matter Oligodendrocytes. Journal of Neuropathology and Experimental Neurology, 2002, 61, 12-22.	1.7	62
20	Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathologica, 2019, 137, 467-485.	7.7	56
21	Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS. Acta Neuropathologica, 2015, 130, 783-798.	7.7	55
22	Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathologica Communications, 2013, 1, 5.	5.2	52
23	Experimental Models of Neuromyelitis Optica. Brain Pathology, 2014, 24, 74-82.	4.1	48
24	Mechanisms for lesion localization in neuromyelitis optica spectrum disorders. Current Opinion in Neurology, 2018, 31, 325-333.	3.6	48
25	Autoimmune CD4+ T Cell Memory: Lifelong Persistence of Encephalitogenic T Cell Clones in Healthy Immune Repertoires. Journal of Immunology, 2005, 175, 69-81.	0.8	46
26	After Injection into the Striatum, in Vitro-Differentiated Microglia- and Bone Marrow-Derived Dendritic Cells Can Leave the Central Nervous System via the Blood Stream. American Journal of Pathology, 2008, 173, 1669-1681.	3.8	42
27	Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathologica Communications, 2016, 4, 82.	5.2	41
28	Transplantation of human amnion prevents recurring adhesions and ameliorates fibrosis in a rat model of sciatic nerve scarring. Acta Biomaterialia, 2018, 66, 335-349.	8.3	38
29	Complementary Contribution of CD4 and CD8 T Lymphocytes to T-Cell Infiltration of the Intact and the Degenerative Spinal Cord. American Journal of Pathology, 2005, 166, 1441-1450.	3.8	37
30	New tools to trace populations of inflammatory cells in the CNS. Glia, 2001, 36, 125-136.	4.9	24
31	Selective and Antigen-Dependent Effects of Myelin Degeneration on Central Nervous System Inflammation. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1284-1296.	1.7	21
32	A novel experimental rat model of peripheral nerve scarring: reliably mimicking post-surgical complications and recurring adhesions. DMM Disease Models and Mechanisms, 2017, 10, 1015-1025.	2.4	20
33	The myelin basic protein-specific T cell repertoire in (transgenic) Lewis rat/SCID mouse chimeras: preferential Vβ8.2 T cell receptor usage depends on an intact Lewis thymic microenvironment. European Journal of Immunology, 1996, 26, 981-988.	2.9	19
34	The "window of susceptibility―for inflammation in the immature central nervous system is characterized by a leaky blood–brain barrier and the local expression of inflammatory chemokines. Neurobiology of Disease, 2009, 35, 368-375.	4.4	17
35	Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord. PLoS ONE, 2016, 11, e0151244.	2.5	15
36	Thymic stromal lymphopoietin is expressed in the intact central nervous system and upregulated in the myelinâ€degenerative central nervous system. Glia, 2014, 62, 1066-1074.	4.9	13

Monika Bradl

#	Article	IF	CITATIONS
37	Microglia pre-activation and neurodegeneration precipitate neuroinflammation without exacerbating tissue injury in experimental autoimmune encephalomyelitis. Acta Neuropathologica Communications, 2019, 7, 14.	5.2	12
38	Archeological neuroimmunology: resurrection of a pathogenic immune response from a historical case sheds light on human autoimmune encephalomyelitis and multiple sclerosis. Acta Neuropathologica, 2021, 141, 67-83.	7.7	11
39	Müller cells and retinal axons can be primary targets in experimental neuromyelitis optica spectrum disorder. Clinical and Experimental Neuroimmunology, 2017, 8, 3-7.	1.0	10
40	Iron accumulation in the choroid plexus, ependymal cells and CNS parenchyma in a rat strain with lowâ€grade haemolysis of fragile macrocytic red blood cells. Brain Pathology, 2021, 31, 333-345.	4.1	6
41	Transition from enhanced T cell infiltration to inflammation in the myelin-degenerative central nervous system. Neurobiology of Disease, 2007, 28, 261-275.	4.4	5
42	Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathologica Communications, 2020, 8, 49.	5.2	5
43	Neurologic autoimmunity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 133, 121-143.	1.8	4
44	Microarray analysis on archival multiple sclerosis tissue: Pathogenic authenticity outweighs technical obstacles. Neuropathology, 2012, 32, 463-466.	1.2	2
45	From astrocyte destruction to axon injury: watching lesion evolution in experimental neuromyelitis optica. Brain, 2022, , .	7.6	0