Yun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8252121/publications.pdf

Version: 2024-02-01

66	1,820	27 h-index	39
papers	citations		g-index
68	68	68	1580 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Fused-Ring-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 6594-6603.	13.7	48
2	Synthetic studies on pseudolaric acid B: Enantioselective synthesis of C4,C10-di-epi-trans-fused [5-7]-bicyclic skeleton. Chinese Chemical Letters, 2021, 32, 1400-1402.	9.0	3
3	$(\hat{A}\pm)$ -Pabmaragramin, a scalemic meroterpenoid produced by Marasmius graminum via precursor-assisted biosynthesis. Tetrahedron Letters, 2021, 63, 152715.	1.4	2
4	Switchable Ring-Contractive Extrusion Reactions of 2,5-Dihydro-1,4,5-thiadiazepine <i>S</i> -Oxides: Entries to Pyridazines or Pyrazoles. Journal of Organic Chemistry, 2020, 85, 1109-1114.	3.2	10
5	Construction of a meroterpenoid-like compound collection by precursor-assisted biosynthesis. Organic and Biomolecular Chemistry, 2020, 18, 5850-5856.	2.8	2
6	Synthesis of indolizines from pyridinium 1,4-zwitterionic thiolates and propiolic acid derivatives $\langle i \rangle via \langle i \rangle$ a formal [4 + 1] pathway. Organic and Biomolecular Chemistry, 2020, 18, 6253-6257.	2.8	23
7	Synthesis of Pyridothiazepines via a 1,5â€Dipolar Cycloaddition Reaction between Pyridinium 1,4â€Zwitterionic Thiolates and Activated Allenes. Advanced Synthesis and Catalysis, 2020, 362, 4668-4672.	4.3	23
8	Synthesis of indolizines from pyridinium 1,4-zwitterionic thiolates and $\hat{l}\pm$ -functionalized bromoalkanes <i>via</i> a stepwise [(5+1) \hat{a} °1] pathway. Chemical Communications, 2020, 56, 8396-8399.	4.1	30
9	Development and Application of Pyridinium 1,4â€Zwitterionic Thiolates: Synthesis of Polysubstituted Thiophenes. European Journal of Organic Chemistry, 2020, 2020, 1896-1906.	2.4	27
10	Synthesis of fully substituted pyrazoles from pyridinium 1,4-zwitterionic thiolates and hydrazonoyl chlorides $\langle i \rangle via \langle i \rangle$ a [[3 + 3] \hat{a}^{2} 1] pathway. Organic and Biomolecular Chemistry, 2020, 18, 2949-2955.	2.8	34
11	Two Reaction Modes of Pyridinium 1,4-Zwitterionic Thiolates with Sulfenes: Synthesis of $3 < i > H < i > 1,2$ -Dithiole 2,2-Dioxides, 1,9a-Dihydropyrido[2,1- $< i > c < i > [1,4]$ thiazines, and Indolizines. Organic Letters, 2020, 22, 5817-5821.	4.6	30
12	Synthesis of tetrasubstituted thiophenes <i>via</i> a [3+2] cascade cyclization reaction of pyridinium 1,4-zwitterionic thiolates and activated allenes. Chemical Communications, 2020, 56, 3085-3088.	4.1	51
13	Application of Pyridinium 1,4-Zwitterionic Thiolates: Synthesis of Benzopyridothiazepines and Benzothiophenes. Journal of Organic Chemistry, 2020, 85, 6794-6802.	3.2	38
14	Syntheses of spiro[indazole-3,3′-indolin]-2′-ones and spiro[indazole-3,3′-indolin]-2′-imines via 1,3-dipo cycloadditions of arynes and studies on their isomerization reactions. Tetrahedron, 2019, 75, 130775.	lar 1.9	8
15	Quick Access to Pyridines through 6ï€-3-Azatriene Electrocyclization: Concise Total Synthesis of Suaveoline Alkaloids. Synlett, 2019, 30, 1615-1620.	1.8	7
16	Enantioselective Total Synthesis of (+)-Arboridinine. Journal of the American Chemical Society, 2019, 141, 7147-7154.	13.7	32
17	Stereoselective Synthesis of Spiro-2-oxabicyclo[2.2.2]octane Enabled by Ag(I)/ Brønsted Acid Relay Catalysis. Organic Letters, 2019, 21, 1694-1698.	4.6	9
18	Pyridinium 1,4-zwitterionic thiolates as a useful class of sulfur-containing synthons: application to the synthesis of 2,5-dihydro-1,4,5-thiadiazepines. Chemical Communications, 2019, 55, 14606-14608.	4.1	49

#	Article	IF	CITATIONS
19	Facile Synthesis of Pyridines from Propargyl Amines: Concise Total Synthesis of Suaveoline Alkaloids. Angewandte Chemie - International Edition, 2019, 58, 1148-1152.	13.8	40
20	Facile Synthesis of Pyridines from Propargyl Amines: Concise Total Synthesis of Suaveoline Alkaloids. Angewandte Chemie, 2019, 131, 1160-1164.	2.0	5
21	Synthesis of <i>cis</i> -5,5a,6,10b-Tetrahydroindeno[2,1- <i>b</i>) indoles through Palladium-Catalyzed Decarboxylative Coupling of Vinyl Benzoxazinanones with Arynes. Organic Letters, 2018, 20, 1417-1420.	4.6	30
22	Collective Total Synthesis of (â^')-Lundurines Aâ€"C. Organic Letters, 2018, 20, 1509-1512.	4.6	21
23	Synthesis of CF ₃ -containing spiro-epoxyoxindoles ⟨i>via the Corey–Chaykovsky reaction of ⟨i>N-alkyl isatins with Ph ₂ S ⁺ CH ₂ GTf ^{â°³} . Organic and Biomolecular Chemistry. 2018. 16. 3564-3567.	2.8	9
24	The Expanding Utility of Rhodiumâ€lminocarbenes: Recent Advances in the Synthesis of Natural Products and Related Scaffolds. Chemistry - A European Journal, 2018, 24, 12757-12766.	3.3	75
25	Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from Morita-Baylis-Hillman Carbonates through a One-Pot Three-Component Cyclization. Journal of Organic Chemistry, 2018, 83, 835-842.	3.2	5
26	Unified Strategy to Access 6 <i>H</i> à€Benzofuro[2,3â€ <i>b</i>]indoles and 5,6â€Dihydroindolo[2,3â€ <i>b</i>]indoles via UV Lightâ€Mediated Diradical Cyclization. Advanced Synthesis and Catalysis, 2018, 360, 474-478.	4.3	13
27	2-(1-Methylhydrazinyl)pyridine as a reductively removable directing group in a cobalt-catalyzed C(sp ²)â€"H bond alkenylation/annulation cascade. Chemical Communications, 2018, 54, 98-101.	4.1	41
28	Divergent Total Syntheses of (â^')â€Daphnilongeraninâ€B and (â^')â€Daphenylline. Angewandte Chemie - International Edition, 2018, 57, 947-951.	13.8	84
29	Divergent Total Syntheses of (â^')â€Daphnilongeraninâ€B and (â^')â€Daphenylline. Angewandte Chemie, 2018, 959-963.	130, 2.0	16
30	Relay Catalysis of Rh (II) and Cobaloxime: Stereoselective Synthesis of Spiroindanones from N-Sulfonyl-1,2,3-triazoles. Organic Letters, 2018, 20, 7514-7517.	4.6	23
31	Frontispiece: The Expanding Utility of Rhodium-Iminocarbenes: Recent Advances in the Synthesis of Natural Products and Related Scaffolds. Chemistry - A European Journal, 2018, 24, .	3.3	1
32	Trifunctionalization of Allenes via Cobalt-Catalyzed MHP-Assisted C–H Bond Functionalization and Molecular Oxygen Activation. ACS Catalysis, 2018, 8, 6645-6649.	11.2	50
33	Formal Synthesis of (±)-Aplykurodinone-1 through a Hetero-Pauson–Khand Cycloaddition Approach. Organic Letters, 2017, 19, 1056-1059.	4.6	12
34	Cobaloxime-catalyzed hydration of terminal alkynes without acidic promoters. Chemical Communications, 2017, 53, 6926-6929.	4.1	31
35	A new approach to arylhydrazides via the reaction of the Mitsunobu reagent with arynes: further application to access diverse nitrogen-containing heterocycles in one pot. Organic Chemistry Frontiers, 2017, 4, 1636-1639.	4.5	12
36	Asymmetric Total Synthesis of (â^')-Aspidophylline A. Organic Letters, 2017, 19, 1650-1653.	4.6	51

#	Article	IF	Citations
37	First total synthesis of (\hat{a}^{-1}) -salprzelactone. Tetrahedron Letters, 2017, 58, 1775-1777.	1.4	3
38	Bioinspired Total Synthesis of ($\hat{A}\pm$)-Chaetophenol C Enabled by a Pd-Catalyzed Cascade Cyclization. Organic Letters, 2017, 19, 4387-4390.	4.6	15
39	A Chemoselective N-Arylation Reaction of 2-Aminopyridine Derivatives with Arynes. Journal of Organic Chemistry, 2017, 82, 9410-9417.	3.2	17
40	Synthesis of spiro-3 <i>H</i> -indazoles <i>via</i> 1,3-dipolar cycloaddition of arynes with 6-diazocyclohex-2-en-1-one derivatives and fused-2 <i>H</i> -indazoles by subsequent rearrangement. RSC Advances, 2017, 7, 54087-54090.	3.6	17
41	Synthesis of Spiro[indazole-3,3′-indolin]-2′-ones via [3 + 2] Dipolar Cycloaddition of Arynes with 3-Diazoindolin-2-ones and Indazolo[2,3- <i>c</i>) Quinazolin-6(5 <i>H</i>) Ones by Subsequent Thermal Isomerization. Journal of Organic Chemistry, 2017, 82, 8228-8233.	3.2	30
42	Rhodiumâ€Catalyzed Denitrogenative [3+2] Cycloaddition: Access to Functionalized Hydroindolones and the Framework of Montanineâ€Type <i>Amaryllidaceae</i> Alkaloids. Chemistry - A European Journal, 2017, 23, 12930-12936.	3.3	17
43	Rh-Catalyzed $[3 + 2]$ Cycloaddition of 1-Sulfonyl-1,2,3-triazoles: Access to the Framework of Aspidosperma and Kopsia Indole Alkaloids. Organic Letters, 2016, 18, 4076-4079.	4.6	58
44	Total Synthesis of the Diterpenoid (+)â€Harringtonolide. Angewandte Chemie, 2016, 128, 11810-11813.	2.0	18
45	Total Synthesis of the Diterpenoid (+)â€Harringtonolide. Angewandte Chemie - International Edition, 2016, 55, 11638-11641.	13.8	59
46	An environmentally friendly approach to pyrrolo[1,2-a]quinoxalines using oxygen as the oxidant. Tetrahedron Letters, 2016, 57, 3908-3911.	1.4	21
47	lodineâ€Catalyzed Facile Synthesis of Pyrrolo―and Indolo[1,2â€ <i>a</i>]quinoxalines. Asian Journal of Organic Chemistry, 2015, 4, 866-869.	2.7	24
48	Synthesis of Polysubstituted Pyridines via a One-Pot Metal-Free Strategy. Organic Letters, 2015, 17, 5974-5977.	4.6	70
49	Stereoselective Synthesis of (2 <i>Z</i>)-2,4-Dienamides via NBS-Mediated Allyloxyl Addition–Claisen Rearrangement–Dehydrobromination Cascade Reaction of Ynsulfonamides. Organic Letters, 2015, 17, 3994-3997.	4.6	23
50	A One-Pot Synthesis of Dibenzofurans from 6-Diazo-2-cyclohexenones. Organic Letters, 2015, 17, 5744-5747.	4.6	30
51	Expedient Construction of the [5â€6â€7] Tricyclic Core of Calyciphylline Aâ€Type Alkaloids. Chemistry - an Asian Journal, 2015, 10, 865-868.	3.3	29
52	Silver(I)-Catalyzed Ring-Contractive Rearrangement: A New Entry to 5-Alkylidene-2-cyclopentenones. Organic Letters, 2014, 16, 6378-6381.	4.6	14
53	Total Synthesis of Indole Alkaloid (±)-Subincanadine E. Organic Letters, 2014, 16, 3173-3175.	4.6	26
54	Stereocontrolled Total Syntheses of $(\hat{A}\pm)$ -Fawcettimine, $(\hat{A}\pm)$ -Lycoflexine, and $(\hat{A}\pm)$ -Lycoflexine $\langle i\rangle N\langle i\rangle$ -Oxide. Organic Letters, 2014, 16, 196-199.	4.6	25

#	Article	IF	CITATION
55	Total Synthesis of (±)-Sculponeatin N. Organic Letters, 2014, 16, 216-219.	4.6	56
56	Direct Access to Tetrahydro [1,2] diazepinones from $\hat{l}\pm,\hat{l}^2$ -Epoxy-N-aziridinylimines via Anionic Rearrangement. Organic Letters, 2013, 15, 914-916.	4.6	8
57	Synthesis of the Tetracyclic Core Structure of (±)â€Nakadomarinâ€A through Azomethine Ylideâ€Alkene [3+2] Cycloaddtion. Asian Journal of Organic Chemistry, 2013, 2, 561-564.	2.7	7
58	Facile Synthesis of 2-Arylphenols via Palladium-Catalyzed Cross-Coupling of Aryl Iodides with 6-Diazo-2-cyclohexenones. Organic Letters, 2013, 15, 808-811.	4.6	28
59	Antimalarial Spiro-Bridged 1,2-Dioxolanes via Intramolecular Addition of Peroxycarbenium Ions to C-C Double Bonds. Heterocycles, 2012, 86, 245.	0.7	8
60	Simple Analogues of Qinghaosu (Artemisinin). Chemistry - an Asian Journal, 2012, 7, 1881-1886.	3.3	14
61	Room Temperature Asymmetric Allylic Trifluoromethylation of Morita–Baylis–Hillman Carbonates. Organic Letters, 2011, 13, 6082-6085.	4.6	57
62	A Hydrogen Peroxide Based Access to Qinghaosu (Artemisinin). Organic Letters, 2011, 13, 4212-4215.	4.6	43
63	Synthesis and in vitro antimalarial activity of spiro-analogues of peroxyplakoric acids. Tetrahedron, 2009, 65, 6972-6985.	1.9	14
64	Facile Ring-Opening of Oxiranes by H2O2 Catalyzed by Phosphomolybdic Acid. Organic Letters, 2009, 11, 2691-2694.	4.6	51
65	A Broadly Applicable Mild Method for the Synthesis of gem-Diperoxides from Corresponding Ketones or 1,3-Dioxolanes. Organic Letters, 2009, 11, 1615-1618.	4.6	67
66	Synthesis of a 1.2.7 8ôFTetraevaôFeniro[5.5] undecane. Chinese Journal of Chemistry, 2007, 25, 1204,1308	4.0	01