
Kwangwook Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/825206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization. Cell, 2010, 141, 859-871.	28.9	466
2	Chronic 'jet lag' produces temporal lobe atrophy and spatial cognitive deficits. Nature Neuroscience, 2001, 4, 567-568.	14.8	291
3	Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nature Neuroscience, 2011, 14, 545-547.	14.8	273
4	Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95. Neuron, 2007, 56, 488-502.	8.1	235
5	Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130144.	4.0	228
6	Cholinergic Neurotransmission Is Essential for Perirhinal Cortical Plasticity and Recognition Memory. Neuron, 2003, 38, 987-996.	8.1	206
7	The JAK/STAT Pathway Is Involved in Synaptic Plasticity. Neuron, 2012, 73, 374-390.	8.1	185
8	Altered Hippocampal Synaptic Potentiation in P2X4 Knock-Out Mice. Journal of Neuroscience, 2006, 26, 9006-9009.	3.6	163
9	Tau Phosphorylation at Serine 396 Residue Is Required for Hippocampal LTD. Journal of Neuroscience, 2015, 35, 4804-4812.	3.6	163
10	A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience, 2012, 5, 13.	2.9	149
11	An Activity-Regulated microRNA, miR-188, Controls Dendritic Plasticity and Synaptic Transmission by Downregulating Neuropilin-2. Journal of Neuroscience, 2012, 32, 5678-5687.	3.6	108
12	Metabotropic Glutamate Receptor-Mediated LTD Involves Two Interacting Ca2+ Sensors, NCS-1 and PICK1. Neuron, 2008, 60, 1095-1111.	8.1	100
13	Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nature Neuroscience, 2010, 13, 1216-1224.	14.8	93
14	Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus. Brain, 2013, 136, 3753-3765.	7.6	92
15	Regulation of Synaptic Rac1 Activity, Long-Term Potentiation Maintenance, and Learning and Memory by BCR and ABR Rac GTPase-Activating Proteins. Journal of Neuroscience, 2010, 30, 14134-14144.	3.6	91
16	Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Scientific Reports, 2015, 5, 10934.	3.3	85
17	Rare Individual Amyloid-Î ² Oligomers Act on Astrocytes to Initiate Neuronal Damage. Biochemistry, 2014, 53, 2442-2453.	2.5	83
18	Ultradian corticosterone secretion is maintained in the absence of circadian cues. European Journal of Neuroscience, 2012, 36, 3142-3150.	2.6	80

KWANGWOOK CHO

#	Article	IF	CITATIONS
19	Human ProNGF: biological effects and binding profiles at TrkA, P75 ^{NTR} and sortilin. Journal of Neurochemistry, 2008, 107, 1124-1135.	3.9	71
20	Translational Concepts of mGluR5 in Synaptic Diseases of the Brain. Frontiers in Pharmacology, 2012, 3, 199.	3.5	66
21	A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-l±. Molecular Brain, 2009, 2, 18.	2.6	62
22	SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Scientific Reports, 2016, 6, 26676.	3.3	60
23	Long-Term Depression of Kainate Receptor-Mediated Synaptic Transmission. Neuron, 2006, 49, 95-106.	8.1	55
24	Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and ratÂneuronal cell death. Communications Biology, 2020, 3, 79.	4.4	55
25	Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer's Disease. Scientific Reports, 2016, 6, 34433.	3.3	54
26	Physiological and Pathophysiological Implications of Synaptic Tau. Neuroscientist, 2017, 23, 137-151.	3.5	53
27	Ca2+-permeable AMPA receptor: A new perspective on amyloid-beta mediated pathophysiology of Alzheimer's disease. Neuropharmacology, 2017, 112, 221-227.	4.1	52
28	Corticosteroids: way upstream. Molecular Brain, 2010, 3, 2.	2.6	49
29	False recognition in a mouse model of Alzheimer's disease: rescue with sensory restriction and memantine. Brain, 2012, 135, 2103-2114.	7.6	49
30	Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity. Nature Neuroscience, 2016, 19, 84-93.	14.8	48
31	Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. Journal of Physiology, 2003, 548, 723-730.	2.9	47
32	Experience-dependent modification of mechanisms of long-term depression. Nature Neuroscience, 2006, 9, 170-172.	14.8	45
33	Neuronal calcium sensors and synaptic plasticity. Biochemical Society Transactions, 2009, 37, 1359-1363.	3.4	45
34	Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling. Stem Cell Research, 2013, 11, 1206-1221.	0.7	42
35	Cooperation between mglu receptors: a depressing mechanism?. Trends in Neurosciences, 2002, 25, 405-411.	8.6	39
36	Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacological Research, 2018, 128, 110-121.	7.1	32

KWANGWOOK CHO

#	Article	IF	CITATIONS
37	Planar Airy beam light-sheet for two-photon microscopy. Biomedical Optics Express, 2020, 11, 3927.	2.9	31
38	Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacological Research, 2016, 104, 97-107.	7.1	29
39	Glucocorticoids activate a synapse weakening pathway culminating in tau phosphorylation in the hippocampus. Pharmacological Research, 2017, 121, 42-51.	7.1	29
40	Metabotropic glutamate receptor signalling in perirhinal cortical neurons. Molecular and Cellular Neurosciences, 2004, 25, 275-287.	2.2	24
41	Impairment of Release Site Clearance within the Active Zone by Reduced SCAMP5 Expression Causes Short-Term Depression of Synaptic Release. Cell Reports, 2018, 22, 3339-3350.	6.4	23
42	Sensing change: The emerging role of calcium sensors in neuronal disease. Seminars in Cell and Developmental Biology, 2011, 22, 530-535.	5.0	21
43	Cyclin Y inhibits plasticity-induced AMPA receptor exocytosis and LTP. Scientific Reports, 2015, 5, 12624.	3.3	19
44	Atypical evening cortisol profile induces visual recognition memory deficit in healthy human subjects. Molecular Brain, 2008, 1, 4.	2.6	17
45	M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer's disease pathology. Brain Communications, 2020, 2, fcaa058.	3.3	16
46	Emerging insights into synapse dysregulation in Alzheimer's disease. Brain Communications, 2022, 4, .	3.3	16
47	Group I mGluR regulates the polarity of spike-timing dependent plasticity in substantia gelatinosa neurons. Biochemical and Biophysical Research Communications, 2006, 347, 509-516.	2.1	12
48	The role of neuronal calcium sensors in balancing synaptic plasticity and synaptic dysfunction. Frontiers in Molecular Neuroscience, 2012, 5, 57.	2.9	12
49	Regulation of Synapse Weakening through Interactions of the Microtubule Associated Protein Tau with PACSIN1. Journal of Neuroscience, 2021, 41, 7162-7170.	3.6	12
50	mGluR5 is involved in dendrite differentiation and excitatory synaptic transmission in NTERA2 human embryonic carcinoma cell-derived neurons. Neuropharmacology, 2007, 52, 1403-1414.	4.1	10
51	The Anti-diabetic Drug Gliquidone Modulates Lipopolysaccharide-Mediated Microglial Neuroinflammatory Responses by Inhibiting the NLRP3 Inflammasome. Frontiers in Aging Neuroscience, 2021, 13, 754123.	3.4	8
52	Postsynaptic p47phox regulates long-term depression in the hippocampus. Cell Discovery, 2018, 4, 44.	6.7	7
53	The Role of Tau in theÂPost-synapse. Advances in Experimental Medicine and Biology, 2019, 1184, 113-121.	1.6	5
54	Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95. Neuron, 2008, 57, 326-327.	8.1	1

4

#	Article	IF	CITATIONS
55	The synapse and brain function. Seminars in Cell and Developmental Biology, 2011, 22, 488-491.	5.0	1