Dmitrii F Perepichka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8250405/publications.pdf Version: 2024-02-01

DMITDII F DEDEDICHKA

#	Article	IF	CITATIONS
1	Recent advances in room temperature phosphorescence of crystalline boron containing organic compounds. Aggregate, 2022, 3, e123.	9.9	35
2	Bidirectional Phase Transformation of Supramolecular Networks Using Two Molecular Signals. ACS Nano, 2022, 16, 1560-1566.	14.6	1
3	Probing the Thermodynamics of Moiré Patterns in Molecular Self-Assembly at the Liquid–Solid Interface. Chemistry of Materials, 2022, 34, 2449-2457.	6.7	3
4	Vanishing Electronic Band Gap in Two-Dimensional Hydrogen-Bonded Organic Frameworks. Chemistry of Materials, 2022, 34, 3461-3467.	6.7	6
5	Tandem Desulfurization/C–C Coupling Reaction of Tetrathienylbenzenes on Cu(111): Synthesis of Pentacene and an Exotic Ladder Polymer. ACS Nano, 2022, 16, 6506-6514.	14.6	7
6	A 2D perchlorinated sp2-carbon framework. Cell Reports Physical Science, 2022, 3, 100858.	5.6	2
7	Quantifying Planarity in the Design of Organic Electronic Materials. Angewandte Chemie - International Edition, 2021, 60, 1364-1373.	13.8	41
8	Quantifying Planarity in the Design of Organic Electronic Materials. Angewandte Chemie, 2021, 133, 1384-1393.	2.0	1
9	Electrically conductive covalent organic frameworks: bridging the fields of organic metals and 2D materials. Journal of Materials Chemistry C, 2021, 9, 10668-10676.	5.5	38
10	Acenaphthylene as a building block for π-electron functional materials. Journal of Materials Chemistry C, 2021, 9, 12448-12461.	5.5	20
11	Alternatingâ€Currentâ€Driven Colorâ€Tunable Organic Lightâ€Emitting Triodes. Advanced Optical Materials, 2021, 9, 2001655.	7.3	8
12	Hydrogen Bonding Versus π-Stacking in Charge-Transfer Co-crystals. Crystal Growth and Design, 2021, 21, 2609-2613.	3.0	13
13	Controlling Structural and Energetic Disorder in High-Mobility Polymer Semiconductors via Doping with Nitroaromatics. Chemistry of Materials, 2021, 33, 2937-2947.	6.7	15
14	Room Temperature Phosphorescence vs Triplet–Triplet Annihilation in N-Substituted Acridone Solids. Journal of Physical Chemistry Letters, 2021, 12, 6431-6438.	4.6	14
15	Synthesis of Boroxine and Dioxaborole Covalent Organic Frameworks via Transesterification and Metathesis of Pinacol Boronates. Journal of the American Chemical Society, 2021, 143, 13274-13280.	13.7	17
16	Mechanism of the Photodegradation of Aâ€Dâ€A Acceptors for Organic Photovoltaics**. Angewandte Chemie - International Edition, 2021, 60, 24833-24837.	13.8	47
17	Identification of Topotactic Surface onfined Ullmannâ€Polymerization. Small, 2021, 17, e2103044.	10.0	9
18	Glaser Coupling of Substituted Anthracene Diynes on a Non-metallic Surface at the Vapor-Solid Interface. Chemical Research in Chinese Universities, 2021, 37, 1143.	2.6	0

#	Article	IF	CITATIONS
19	Adatoms in the Surface-Confined Ullmann Coupling of Phenyl Groups. Journal of Physical Chemistry Letters, 2021, 12, 11061-11069.	4.6	11
20	Understanding the Photovoltaic Behavior of A–D–A Molecular Semiconductors through a Permutation of End Groups. Journal of Organic Chemistry, 2020, 85, 52-61.	3.2	15
21	Star-shaped triarylamine-based hole-transport materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 779-787.	4.9	5
22	Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angewandte Chemie - International Edition, 2020, 59, 9977-9981.	13.8	129
23	Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angewandte Chemie, 2020, 132, 10063-10067.	2.0	82
24	Band gap engineering of donor–acceptor co-crystals by complementary two-point hydrogen bonding. Materials Chemistry Frontiers, 2020, 4, 3669-3677.	5.9	14
25	Silicate Nanocrystals: PEDOT Encapsulated and Mechanochemically Engineered Silicate Nanocrystals for High Energy Density Cathodes (Adv. Mater. Interfaces 13/2020). Advanced Materials Interfaces, 2020, 7, 2070075.	3.7	0
26	A Pureâ€Red Doublet Emission with 90 % Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie, 2020, 132, 23230-23234.	2.0	8
27	A Pureâ€Red Doublet Emission with 90 % Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie - International Edition, 2020, 59, 23030-23034.	13.8	54
28	Fred Wudl. A giant in π-conjugated materials. Materials Chemistry Frontiers, 2020, 4, 3398-3399.	5.9	0
29	Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nature Materials, 2020, 19, 874-880.	27.5	158
30	PEDOT Encapsulated and Mechanochemically Engineered Silicate Nanocrystals for High Energy Density Cathodes. Advanced Materials Interfaces, 2020, 7, 2000226.	3.7	4
31	Innenrücktitelbild: Crystal Engineering of Room Temperature Phosphorescence in Organic Solids (Angew. Chem. 25/2020). Angewandte Chemie, 2020, 132, 10282-10282.	2.0	2
32	Fluorination of a polymer donor through the trifluoromethyl group for high-performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 12149-12155.	10.3	12
33	Serendipitous Formation of Semiconducting Semi-Nindigo Indigoid by the Degradation of Diindolopyrrole. Journal of Organic Chemistry, 2020, 85, 5073-5077.	3.2	5
34	Boosting Efficiency and Curtailing the Efficiency Roll-Off in Green Perovskite Light-Emitting Diodes via Incorporating Ytterbium as Cathode Interface Layer. ACS Applied Materials & Interfaces, 2020, 12, 18761-18768.	8.0	23
35	Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chemical Society Reviews, 2020, 49, 2020-2038.	38.1	73
36	Trifluoromethyl Group-Modified Non-Fullerene Acceptor toward Improved Power Conversion Efficiency over 13% in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11543-11550.	8.0	34

#	Article	IF	CITATIONS
37	A Two-Dimensional Poly(azatriangulene) Covalent Organic Framework with Semiconducting and Paramagnetic States. Journal of the American Chemical Society, 2020, 142, 2155-2160.	13.7	72
38	Nitroaromatics as n-type organic semiconductors for field effect transistors. Chemical Communications, 2020, 56, 6432-6435.	4.1	14
39	Stereospecific Epitaxial Growth of Bilayered Porous Molecular Networks. Journal of the American Chemical Society, 2020, 142, 8662-8671.	13.7	11
40	Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition. Journal of the American Chemical Society, 2020, 142, 8862-8870.	13.7	101
41	Surface-Confined Macrocyclization <i>via</i> Dynamic Covalent Chemistry. ACS Nano, 2020, 14, 2956-2965.	14.6	8
42	A macrocyclic oligofuran: synthesis, solid state structure and electronic properties. Chemical Science, 2019, 10, 8527-8532.	7.4	22
43	2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine. Angewandte Chemie, 2019, 131, 13891-13895.	2.0	24
44	2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine. Angewandte Chemie - International Edition, 2019, 58, 13753-13757.	13.8	137
45	Strong Enhancement of ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie, 2019, 131, 17473-17482.	2.0	11
46	Strong Enhancement of Ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, 17312-17321.	13.8	48
47	Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface. Beilstein Journal of Nanotechnology, 2019, 10, 1188-1199.	2.8	0
48	Temperature-induced molecular reorganization on Au(111) driven by oligomeric defects. Nanoscale, 2019, 11, 19468-19476.	5.6	9
49	Dynamic covalent conjugated polymer epitaxy on graphene. Journal of Materials Chemistry C, 2019, 7, 12240-12247.	5.5	7
50	Surface-mediated assembly, polymerization and degradation of thiophene-based monomers. Chemical Science, 2019, 10, 5167-5175.	7.4	28
51	An unexpected organometallic intermediate in surface-confined Ullmann coupling. Nanoscale, 2019, 11, 7682-7689.	5.6	29
52	Polysiloxane–poly(vinyl alcohol) composite dielectrics for high-efficiency low voltage organic thin film transistors. Journal of Materials Chemistry C, 2019, 7, 4879-4886.	5.5	13
53	1. Design Principles for Organic Semiconductors. , 2019, , 1-50.		0
54	Frontispiece: Strong Enhancement of ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0

#	Article	IF	CITATIONS
55	Covalent organic frameworks from a monomer with reduced symmetry: polymorphism and Sierpiński triangles. Chemical Communications, 2019, 55, 13586-13589.	4.1	17
56	Frontispiz: Strong Enhancement of ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie, 2019, 131, .	2.0	0
57	Face-on <i>vs.</i> edge-on: tuning the structure of tetrathiafulvalene monolayers with solvent. Journal of Materials Chemistry C, 2018, 6, 3787-3791.	5.5	8
58	Fred Wudl's fifty-year contribution to organic semiconductors. Journal of Materials Chemistry C, 2018, 6, 3483-3484.	5.5	5
59	Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano, 2018, 12, 7445-7481.	14.6	225
60	Alkyl chain length effects on double-deck assembly at a liquid/solid interface. Nanoscale, 2018, 10, 14993-15002.	5.6	18
61	Conjugated Covalent Organic Frameworks via Michael Addition–Elimination. Journal of the American Chemical Society, 2017, 139, 2421-2427.	13.7	286
62	Patchy Nanofibers from the Thin Film Selfâ€Assembly of a Conjugated Diblock Copolymer. Angewandte Chemie - International Edition, 2017, 56, 6152-6156.	13.8	25
63	Patchy Nanofibers from the Thin Film Selfâ€Assembly of a Conjugated Diblock Copolymer. Angewandte Chemie, 2017, 129, 6248-6252.	2.0	5
64	H-Bonding Control of Supramolecular Ordering of Diketopyrrolopyrroles. Chemistry of Materials, 2017, 29, 2979-2987.	6.7	41
65	The role of halogens in on-surface Ullmann polymerization. Faraday Discussions, 2017, 204, 453-469.	3.2	54
66	A Wide Band Gap Naphthalene Semiconductor for Thinâ€Film Transistors. Advanced Electronic Materials, 2017, 3, 1600556.	5.1	15
67	A 2D Substitutional Solid Solution through Hydrogen Bonding of Molecular Building Blocks. ACS Nano, 2017, 11, 8901-8909.	14.6	35
68	Flexible Asymmetric Supercapacitors via Spray Coating of a New Electrochromic Donor–Acceptor Polymer. Advanced Energy Materials, 2017, 7, 1601623.	19.5	131
69	Aromatization of Benzannulated Perylene-3,9-diones: Unexpected Photophysical Properties and Reactivity. Organic Letters, 2016, 18, 3574-3577.	4.6	14
70	A new approach to polycyclic azaarenes: visible-light photolysis of vinyl azides in the synthesis of diazabenzopyrene and diazaperylene. Journal of Materials Chemistry C, 2016, 4, 7269-7276.	5.5	22
71	Supramolecular ordering of difuryldiketopyrrolopyrrole: the effect of alkyl chains and inter-ring twisting. CrystEngComm, 2016, 18, 4285-4289.	2.6	23
72	Crimea report leaves readers in the cold. Science, 2016, 352, 780-781.	12.6	1

#	Article	IF	CITATIONS
73	Complementary Hydrogen Bonding Modulates Electronic Properties and Controls Selfâ€Assembly of Donor/Acceptor Semiconductors. Chemistry - A European Journal, 2016, 22, 17251-17261.	3.3	21
74	Controlling C ₆₀ Organization through Dipole-Induced Band Alignment at Self-Assembled Monolayer Interfaces. Chemistry of Materials, 2016, 28, 8322-8329.	6.7	8
75	A Molecular Necklace: Threading β-Cyclodextrins onto Polymers Derived from Bile Acids. Angewandte Chemie - International Edition, 2016, 55, 11979-11983.	13.8	37
76	Hydrogen bonding vs. molecule–surface interactions in 2D self-assembly of [C60]fullerenecarboxylic acids. Nanoscale, 2016, 8, 16955-16962.	5.6	11
77	A Molecular Necklace: Threading β-Cyclodextrins onto Polymers Derived from Bile Acids. Angewandte Chemie, 2016, 128, 12158-12162.	2.0	10
78	Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. Journal of the American Chemical Society, 2016, 138, 16696-16702.	13.7	81
79	Synthesis of Macrocyclic Poly(3-hexylthiophene) and Poly(3-heptylselenophene) by Alkyne Homocoupling. ACS Macro Letters, 2016, 5, 1075-1079.	4.8	18
80	A smart polymer with a high sensitivity to temperature and humidity based on polyacrylamide hydrogel doped with polyiodide. Journal of Materials Chemistry C, 2016, 4, 11055-11058.	5.5	18
81	Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small, 2016, 12, 3888-3907.	10.0	91
82	Unravelling the Self-Assembly of Hydrogen Bonded NDI Semiconductors in 2D and 3D. Chemistry of Materials, 2016, 28, 951-961.	6.7	41
83	Influence of heteroatoms on the charge mobility of anthracene derivatives. Journal of Materials Chemistry C, 2016, 4, 3517-3522.	5.5	34
84	Supramolecular structures of halogenated oligothiophenes on the Si(111)-â^š3 ×â^š3-Ag surface. Surface Science, 2016, 647, 51-54.	1.9	6
85	Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nature Communications, 2016, 7, 10235.	12.8	91
86	Tridentate benzylthiols on Au(111): control of self-assembly geometry. Nanoscale, 2015, 7, 5014-5022.	5.6	7
87	Pentacene on Ni(111): room-temperature molecular packing and temperature-activated conversion to graphene. Nanoscale, 2015, 7, 3263-3269.	5.6	25
88	Ï€â€Extended Indenofluorenes. Chemistry - A European Journal, 2015, 21, 6193-6201.	3.3	18
89	Polymorphism in New Thienothiophene–Thiazolothiazole Organic Semiconductors. ChemPhysChem, 2015, 16, 1173-1178.	2.1	15
90	Solution and air stable host/guest architectures from a single layer covalent organic framework. Chemical Communications, 2015, 51, 16510-16513.	4.1	48

#	Article	IF	CITATIONS
91	Tailoring the Reaction Path in the On-Surface Chemistry of Thienoacenes. Journal of Physical Chemistry C, 2015, 119, 22432-22438.	3.1	12
92	Synthesis and Divergent Electronic Properties of Two Ring-Fused Derivatives of 9,10-Diphenylanthracene. Organic Letters, 2015, 17, 4224-4227.	4.6	18
93	Supramolecular control of organic p/n-heterojunctions by complementary hydrogen bonding. Faraday Discussions, 2014, 174, 297-312.	3.2	17
94	Advances and Challenges in the Synthesis of Poly(<i>p</i> â€phenylene vinylene)â€Based Polymers. Israel Journal of Chemistry, 2014, 54, 674-688.	2.3	59
95	Protecting the triplet excited state in sterically congested platinum porphyrin. Dalton Transactions, 2014, 43, 2676-2683.	3.3	16
96	Crystal Engineering of Dual Channel p/n Organic Semiconductors by Complementary Hydrogenâ€Bonding. Angewandte Chemie - International Edition, 2014, 53, 2138-2142.	13.8	140
97	Reply to "Comment on â€~Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization'― ACS Nano, 2014, 8, 1969-1971.	14.6	19
98	Tip-induced C–H activation and oligomerization of thienoanthracenes. Chemical Communications, 2014, 50, 8791-8793.	4.1	14
99	Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver. Nanoscale, 2014, 6, 2660-2668.	5.6	106
100	Substrate, Molecular Structure, and Solvent Effects in 2D Self-Assembly via Hydrogen and Halogen Bonding. Journal of Physical Chemistry C, 2014, 118, 25505-25516.	3.1	59
101	High thermal stability of block copolymer-capped Au and Cu nanoparticles. Chemical Communications, 2014, 50, 11919-11921.	4.1	12
102	Directing the Assembly of Gold Nanoparticles with Two-Dimensional Molecular Networks. ACS Nano, 2014, 8, 2214-2222.	14.6	32
103	Special Issue on Organic Electronics: In Memory of Prof. Michael Bendikov (1971–2013). Israel Journal of Chemistry, 2014, 54, 426-428.	2.3	0
104	Dithienonaphthothiadiazole semiconductors: synthesis, properties, and application to ambipolar field effect transistors. Journal of Materials Chemistry C, 2014, 2, 3972.	5.5	13
105	Pentacenobis(thiadiazole)dione, an n-Type Semiconductor for Field-Effect Transistors. Journal of Organic Chemistry, 2014, 79, 5858-5860.	3.2	19
106	Tuning the Electronic Properties of Poly(thienothiophene vinylene)s via Alkylsulfanyl and Alkylsulfonyl Substituents. Macromolecules, 2013, 46, 9231-9239.	4.8	37
107	Ï€-Electron Conjugation in Two Dimensions. Journal of the American Chemical Society, 2013, 135, 16585-16594.	13.7	214
108	Two-Dimensional Self-Assembly of a Symmetry-Reduced Tricarboxylic Acid. Langmuir, 2013, 29, 7318-7324.	3.5	37

#	Article	IF	CITATIONS
109	1,5-, 2,6- and 9,10-distyrylanthracenes as luminescent organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 2817.	5.5	48
110	Unprecedented Transformation of Tetrathienoanthracene into Pentacene on Ni(111). ACS Nano, 2013, 7, 1652-1657.	14.6	54
111	Synthesis and electronic structure of a two dimensional π-conjugated polythiophene. Chemical Science, 2013, 4, 3263.	7.4	130
112	Oligofuran-containing molecules for organic electronics. Journal of Materials Chemistry C, 2013, 1, 4358.	5.5	77
113	Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization. ACS Nano, 2013, 7, 8190-8198.	14.6	190
114	Perfluoroalkyl-substitution versus electron-deficient building blocks in design of oligothiophene semiconductors. Journal of Materials Chemistry C, 2013, 1, 260-267.	5.5	9
115	Unexpected formation of a cyclic vinylene sulfate in the synthesis of ethynyl-substituted acenes. Chemical Communications, 2012, 48, 6651.	4.1	5
116	2D Self-Assembly of Fused Oligothiophenes: Molecular Control of Morphology. ACS Nano, 2012, 6, 7973-7980.	14.6	24
117	Halogen bonds in 2D supramolecular self-assembly of organic semiconductors. Nanoscale, 2012, 4, 5965.	5.6	120
118	Maximizing Fieldâ€Effect Mobility and Solidâ€ S tate Luminescence in Organic Semiconductors. Angewandte Chemie - International Edition, 2012, 51, 3837-3841.	13.8	135
119	Donor–Acceptor Intermediates and Low-Bandgap Polymers by Electropolymerization of Thienoazaborines. Macromolecules, 2011, 44, 4729-4734.	4.8	26
120	Non-classical heteroacenes: synthesis and properties of anthra[2,3-c:6,7-c′]dithiophene derivatives. Chemical Communications, 2011, 47, 12619.	4.1	9
121	Halogen bonds as stabilizing interactions in a chiral self-assembled molecular monolayer. Chemical Communications, 2011, 47, 9453.	4.1	91
122	New stable donor–acceptor dyads for molecular electronics. Journal of Materials Chemistry, 2011, 21, 1470-1478.	6.7	27
123	Towards "green―electronic materials. α-Oligofurans as semiconductors. Chemical Communications, 2011, 47, 1976-1978.	4.1	196
124	Mastering fundamentals of supramolecular design with carboxylic acids. Common lessons from X-ray crystallography and scanning tunneling microscopy. Chemical Society Reviews, 2011, 40, 191-206.	38.1	164
125	Fred Wudl. Discovering new science through making new molecules. Journal of Materials Chemistry, 2011, 21, 1292-1294.	6.7	5
126	A combined study of mesomorphism, optical, and electronic properties of donor-acceptor columnar liquid crystals. Proceedings of SPIE, 2011, , .	0.8	1

#	Article	IF	CITATIONS
127	Near-IR Photoresponse in New Up-Converting CdSe/NaYF ₄ :Yb,Er Nanoheterostructures. Journal of the American Chemical Society, 2010, 132, 8868-8869.	13.7	183
128	Highly Emissive and Electrochemically Stable Thienylene Vinylene Oligomers and Copolymers: An Unusual Effect of Alkylsulfanyl Substituents. Advanced Functional Materials, 2010, 20, 1661-1669.	14.9	22
129	Multiple NaNbO ₃ /Nb ₂ O ₅ Heterostructure Nanotubes: A New Class of Ferroelectric/Semiconductor Nanomaterials. Advanced Materials, 2010, 22, 1741-1745.	21.0	104
130	New azaborine-thiophene heteroacenes. Chemical Communications, 2010, 46, 7007.	4.1	110
131	Quasi Temperature Independent Electron Mobility in Hexagonal Columnar Mesophases of an H-Bonded Benzotristhiophene Derivative. Chemistry of Materials, 2010, 22, 1420-1428.	6.7	72
132	Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proceedings of the United States of America, 2010, 107, 11200-11204.	7.1	117
133	Improving Biocompatibility of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, Fabrication Methods, and Challenges. Small, 2009, 5, 996-1006.	10.0	182
134	Synthesis of Polyphenylene Molecular Wires by Surfaceâ€Confined Polymerization. Small, 2009, 5, 592-597.	10.0	314
135	Towards crystal engineering of solid-state polymerization in dibromothiophenes. Journal of Materials Chemistry, 2009, 19, 5167.	6.7	35
136	Supramolecular Ordering in Oligothiopheneâ~'Fullerene Monolayers. Journal of the American Chemical Society, 2009, 131, 16844-16850.	13.7	134
137	Synthesis, Polymerization, and Unusual Properties of New Star-Shaped Thiophene Oligomers. Organic Letters, 2009, 11, 3230-3233.	4.6	85
138	Nanoscale Oxidative Patterning of Metallic Surfaces to Modulate Cell Activity and Fate. Nano Letters, 2009, 9, 659-665.	9.1	134
139	Extending Polymer Conjugation into the Second Dimension. Science, 2009, 323, 216-217.	12.6	296
140	Supramolecular assembly of heterocirculenes in 2D and 3D. Chemical Communications, 2009, , 1192.	4.1	100
141	Combining High Electron Affinity and Intramolecular Charge Transfer in 1,3â€Dithiole–Nitrofluorene Push–Pull Diads. Chemistry - A European Journal, 2008, 14, 2757-2770.	3.3	27
142	Self-assembly of rubrene on Cu(111). Nanotechnology, 2008, 19, 424021.	2.6	24
143	Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. Chemistry of Materials, 2008, 20, 2484-2494.	6.7	144
144	Heterocirculenes as a new class of organic semiconductors. Chemical Communications, 2008, , 5354.	4.1	126

#	Article	IF	CITATIONS
145	Environmentally stable light emitting field effect transistors based on 2-(4-pentylstyryl)tetracene. Journal of Materials Chemistry, 2008, 18, 158-161.	6.7	49
146	Self-assembly of Rubrene on Copper Surfaces. Journal of Physical Chemistry C, 2008, 112, 10214-10221.	3.1	31
147	Self-assembled monolayer of alkanephosphoric acid on nanotextured Ti. Journal of Chemical Physics, 2008, 128, 144705.	3.0	29
148	Stabilization of exotic minority phases in a multicomponent self-assembled molecular network. Nanotechnology, 2007, 18, 424031.	2.6	90
149	Crystal Engineering in Two Dimensions:  An Approach to Molecular Nanopatterning. Journal of Physical Chemistry C, 2007, 111, 16996-17007.	3.1	132
150	Molecular Assembly of Rubrene on a Metal/Metal Oxide Nanotemplate. Journal of Physical Chemistry A, 2007, 111, 12674-12678.	2.5	38
151	Metal Nanoparticles: From "Artificial Atoms―to "Artificial Molecules― Angewandte Chemie - International Edition, 2007, 46, 6006-6008.	13.8	45
152	Rectifying Diodes from Asymmetrically Functionalized Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 3134-3135.	13.7	47
153	Rational Modulation of the Periodicity in Linear Hydrogen-Bonded Assemblies of Trimesic Acid on Surfaces. Journal of the American Chemical Society, 2006, 128, 4212-4213.	13.7	169
154	Silicon Nanotubes. Small, 2006, 2, 22-25.	10.0	89
155	The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New π-Electron Donors: 9-(1,3-Dithiol-2-ylidene)fluorene and 9-(1,3-Dithiol-2-ylidene)thioxanthene Derivatives. Chemistry - A European Journal, 2006, 12, 3389-3400.	3.3	33
156	Molecules with Exceptionally Small HOMO-LUMO Gaps. Angewandte Chemie - International Edition, 2005, 44, 5370-5373.	13.8	175
157	Light-Emitting Polythiophenes. Advanced Materials, 2005, 17, 2281-2305.	21.0	858
158	The First Studies of a Tetrathiafulvalene-σ-Acceptor Molecular Rectifier. Chemistry - A European Journal, 2005, 11, 2914-2922.	3.3	106
159	Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics. ChemInform, 2005, 36, no.	0.0	1
160	Molecules with Exceptionally Small HOMO—LUMO Gaps. ChemInform, 2005, 36, no.	0.0	0
161	A new simple synthesis of poly(thiophene-methine)s. Chemical Communications, 2005, , 4187.	4.1	20
162	Self-Assembly and Multistage Redox Chemistry of Strong Electron Acceptors on Metal Surfaces:Â Polynitrofluorenes on Gold and Platinum. Langmuir, 2005, 21, 8824-8831.	3.5	4

#	Article	IF	CITATIONS
163	The dissolution of carbon nanotubes in aniline, revisitedElectronic Supplementary Information (ESI) available: additional TEM pictures of aniline treated MWNTs and SEM of the PTFE membranes used in the work. See http://www.rsc.org/suppdata/jm/b4/b403509g/. Journal of Materials Chemistry, 2004, 14, 2749.	6.7	35
164	Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives:Â The Brick and Mortar of Organic Electronics. Chemical Reviews, 2004, 104, 4891-4946.	47.7	1,606
165	Titelbild: Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene) (Angew.) Tj ETQq1 1 0.7	'84314 rg 2.0	BT /Overlo <mark>ck</mark>
166	Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene). Angewandte Chemie, 2003, 115, 682-685.	2.0	17
167	A Covalent Tetrathiafulvalene–Tetracyanoquinodimethane Diad: Extremely Low HOMO–LUMO Gap, Thermoexcited Electron Transfer, and High-Quality Langmuir–Blodgett Films. Angewandte Chemie - International Edition, 2003, 42, 4636-4639.	13.8	104
168	Cover Picture: Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene) (Angew. Chem. Int. Ed. 6/2003). Angewandte Chemie - International Edition, 2003, 42, 589-589.	13.8	0
169	Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene). Angewandte Chemie - International Edition, 2003, 42, 658-661.	13.8	147
170	A 1:1 cocrystal of 2,7-dicyano-9-dicyanomethylene-4,5-dinitrofluorene and benzonitrile. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1318-o1320.	0.2	2
171	Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers. Langmuir, 2003, 19, 4272-4284.	3.5	132
172	A One-Step Synthesis of a Poly(iptycene) through an Unusual Dielsâ^'Alder Cyclization/Dechlorination of Tetrachloropentacene. Journal of the American Chemical Society, 2003, 125, 10190-10191.	13.7	72
173	Solid-State Synthesis of a Conducting Polythiophene via an Unprecedented Heterocyclic Coupling Reaction. Journal of the American Chemical Society, 2003, 125, 15151-15162.	13.7	196
174	Surface confined pseudorotaxanes with electrochemically controllable complexation propertiesElectronic supplementary information (ESI) available: further experimental and theoretical data. See http://www.rsc.org/suppdata/jm/b3/b306274k/. Journal of Materials Chemistry, 2003, 13, 2111.	6.7	46
175	A (Ï€-Extended Tetrathiafulvalene)â^'Fluorene Conjugate. Unusual Electrochemistry and Charge Transfer Properties: The First Observation of a Covalent D2+â^'σâ^'A•-Redox State1. Journal of the American Chemical Society, 2002, 124, 14227-14238.	13.7	60
176	Synthesis, X-ray Structure, and Properties of a Tetrabenzannelated 1,2,4,5-Cyclophane. Angewandte Chemie, 2002, 114, 3840-3843.	2.0	13
177	Engineering a Remarkably Low HOMO–LUMO Gap by Covalent Linkage of a Strong -Donor and a -Acceptor—TetrathiafulvalenePolynitrofluorene Diads: Their Amphoteric Redox Behavior, Electron Transfer and Spectroscopic Properties. Chemistry - A European Journal, 2002, 8, 4656-4669.	3.3	46
178	Synthesis, X-ray Structure, and Properties of a Tetrabenzannelated 1,2,4,5-Cyclophane. Angewandte Chemie - International Edition, 2002, 41, 3688-3691.	13.8	22
179	Methoxycarbonylmethyl 3-hydroxy-2-(methoxycarbonyl)benzo[b]furan-6-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, o1227-o1228.	0.2	0
180	Supramolecular architecture of two charge-transfer complexes based on 2,7-(X,) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 67 T 0.6	d (X)-4,5-dini 9

Reports, 2002, 47, 251-261.

3

#	Article	IF	CITATIONS
181	The First Tetrathiafulvaleneâ^ ïfâ^Polynitrofluorene Diads: Low HOMOâ^LUMO Gap, Amphoteric Redox Behavior, and Charge Transfer Properties. Organic Letters, 2001, 3, 1431-1434.	4.6	38
182	Pushûpull dithiole û fluorene acceptors as electron transport materials for holography. Synthetic Metals, 2001, 121, 1487-1488.	3.9	17
183	Ï€-Extended nitrofluorene-1,3-dithiole chromophore: enhancing the photoresponse of holographic materials through the balance of intramolecular charge transfer and electron affinity. Journal of Materials Chemistry, 2001, 11, 1772-1774.	6.7	16
184	Electron acceptors of the fluorene series. Part 13. 9-(5-Nitrofuran-2-ylidene)- and 9-(5-nitro-2-thienylidene)-2,4,5,7-tetranitrofluorenes: novel l€-extended electron acceptors. Synthesis, cyclic voltammetry and X-ray crystal structures for the acceptor and its 4,5-dimethyltetrathiafulvalene complex, and a theoretical studyâ€. Perkin Transactions II RSC, 2001, ,	1.1	5
185	1546-1551. Trialkyltetrathiafulvaleneâ~'Ïfâ^'Tetracyanoanthraquinodimethane (R3TTFâ^'Ïfâ^'TCNAQ) Diads:Â Synthesis, Intramolecular Charge-Transfer Properties, and X-ray Crystal Structure. Journal of Organic Chemistry, 2001, 66, 4517-4524.	3.2	44
186	Arene–perfluoroarene interactions in crystal engineering. 5 Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1306-1307.	0.4	13
187	Electron acceptors of the fluorene series. Journal of Organometallic Chemistry, 2001, 637-639, 445-462.	1.8	23
188	Synthesis of Conjugated Tetrathiafulvalene (TTF)-ï€-Acceptor Molecules â~' Intramolecular Charge Transfer and Nonlinear Optical Properties. European Journal of Organic Chemistry, 2001, 2001, 1927-1935.	2.4	35
189	Photochemistry of the Ï€â€Extended 9,10â€Bis(1,3â€dithiolâ€2â€ylidene)―9,10â€dihydroanthracene System: and Characterisation of the Radical Cation, Dication, and Derived Products. Chemistry - A European Journal, 2001, 7, 973-978.	Generatior 3.3	ו 67
190	Electron Acceptors of the Fluorene Series. 9.1Derivatives of 9-(1,2-Dithiol-3-ylidene)-, 9-(1,3-Dithiol-2-ylidene)-, and 9-(1,3-Selenathiol-2-ylidene)fluorenes:Â Synthesis, Intramolecular Charge Transfer, and Redox Properties. Journal of Organic Chemistry, 1999, 64, 6937-6950.	3.2	52
191	Push-pull fluorene acceptors with ferrocene donor moiety. Synthetic Metals, 1999, 102, 1558-1559.	3.9	15
192	Fluorene acceptors with intramolecular charge-transfer from 1,3-dithiole donor moieties: novel electron transport materials. Chemical Communications, 1998, , 819-820.	4.1	19
193	Electron Acceptors of the Fluorene Series. 7.12,7-Dicyano-4,5-dinitro-9-X-fluorenes:Â Synthesis, Cyclic Voltammetry, Charge Transfer Complexation withN-Propylcarbazole in Solution, and X-ray Crystal Structures of Two Tetrathiafulvalene Complexes. Journal of Organic Chemistry, 1998, 63, 6484-6493.	3.2	51
194	Novel Photonic Responses from Low-Dimensional Crystals of Thiophene/Phenylene Oligomers. , 0, , 455-476.		1
195	Fused Oligothiophenes. , 0, , 219-254.		10
196	Polythiophenes as Active Electrode Materials for Electrochemical Capacitors. , 0, , 577-594.		4
197	Thienothiophene Copolymers in Field Effect Transistors. , 0, , 647-672.		1

198 Thiophene-Based Electrochromic Materials. , 0, , 757-782.

#	Article	IF	CITATIONS
199	Photoresponsive Thiophene-Based Molecules and Materials. , 0, , 783-811.		1
200	Synthesis and Properties of Oligo- and Polythiophenes Containing Transition Metals. , 0, , 293-319.		3
201	Thiophene-S,S-Dioxides as a Class of Electron-Deficient Materials for Electronics and Photonics. , 0, , 255-292.		3
202	Synthesis, Characterization and Properties of Regioregular Polythiophene-Based Materials. , 0, , 157-217.		15
203	Theoretical Studies on Thiophene-Containing Compounds. , 0, , 365-417.		7
204	Mechanism of the Photodegradation of Aâ€Đâ€A Acceptors for Organic Photovoltaics. Angewandte Chemie, 0, , .	2.0	1
205	Halogen bonding vs. π-stacking interactions in new bis(acenaphthylene)dione semiconductors. CrystEngComm, 0, , .	2.6	1