Cornelia M Weyand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249227/publications.pdf

Version: 2024-02-01

324 papers 42,100 citations

103 h-index 192 g-index

384 all docs

384 docs citations

times ranked

384

43460 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 2019, 25, 1822-1832.	15.2	2,195
3	Role of the T cell in the genesis of angiotensin Il–induced hypertension and vascular dysfunction. Journal of Experimental Medicine, 2007, 204, 2449-2460.	4.2	1,468
4	Inflammation, Immunity, and Hypertension. Hypertension, 2011, 57, 132-140.	1.3	718
5	The Influence of Age on T Cell Generation and TCR Diversity. Journal of Immunology, 2005, 174, 7446-7452.	0.4	699
6	Medium- and Large-Vessel Vasculitis. New England Journal of Medicine, 2003, 349, 160-169.	13.9	689
7	Diversity and clonal selection in the human T-cell repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13139-13144.	3.3	622
8	Understanding immunosenescence to improve responses to vaccines. Nature Immunology, 2013, 14, 428-436.	7.0	616
9	Lymphoid Neogenesis in Rheumatoid Synovitis. Journal of Immunology, 2001, 167, 1072-1080.	0.4	596
10	Monoclonal T-Cell Proliferation and Plaque Instability in Acute Coronary Syndromes. Circulation, 2000, 101, 2883-2888.	1.6	497
11	Infliximab for Maintenance of Glucocorticosteroid-Induced Remission of Giant Cell Arteritis. Annals of Internal Medicine, 2007, 146, 621.	2.0	491
12	T Cell Activation in Rheumatoid Synovium Is B Cell Dependent. Journal of Immunology, 2001, 167, 4710-4718.	0.4	443
13	The Influence of HLA-DRB1 Genes on Disease Severity in Rheumatoid Arthritis. Annals of Internal Medicine, 1992, 117, 801-806.	2.0	431
14	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine, 2016, 213, 337-354.	4.2	403
15	T cell subset-specific susceptibility to aging. Clinical Immunology, 2008, 127, 107-118.	1.4	388
16	Value of Immunological Markers in Predicting Responsiveness to Influenza Vaccination in Elderly Individuals. Journal of Virology, 2001, 75, 12182-12187.	1.5	376
17	Perturbation of the T-Cell Repertoire in Patients With Unstable Angina. Circulation, 1999, 100, 2135-2139.	1.6	374
18	Th17 and Th1 T-Cell Responses in Giant Cell Arteritis. Circulation, 2010, 121, 906-915.	1.6	368

#	Article	IF	CITATIONS
19	Immune mechanisms in medium and large-vessel vasculitis. Nature Reviews Rheumatology, 2013, 9, 731-740.	3 . 5	347
20	Giant-Cell Arteritis and Polymyalgia Rheumatica. New England Journal of Medicine, 2014, 371, 50-57.	13.9	335
21	T-Cell–Mediated Lysis of Endothelial Cells in Acute Coronary Syndromes. Circulation, 2002, 105, 570-575.	1.6	332
22	Tissue Cytokine Patterns in Patients with Polymyalgia Rheumatica and Giant Cell Arteritis. Annals of Internal Medicine, 1994, 121, 484.	2.0	324
23	Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nature Medicine, 2012, 18, 1518-1524.	15.2	321
24	Major Histocompatibility Complex Class I–Recognizing Receptors Are Disease Risk Genes in Rheumatoid Arthritis. Journal of Experimental Medicine, 2001, 193, 1159-1168.	4.2	316
25	Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: A double-blind, placebo-controlled, randomized prospective clinical trial. Arthritis and Rheumatism, 2006, 54, 3310-3318.	6.7	303
26	Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis and Rheumatism, 1993, 36, 1286-1294.	6.7	298
27	The immunology of rheumatoid arthritis. Nature Immunology, 2021, 22, 10-18.	7.0	297
28	Giant-Cell Arteritis and Polymyalgia Rheumatica. Annals of Internal Medicine, 2003, 139, 505.	2.0	295
29	Vessel-Specific Toll-Like Receptor Profiles in Human Medium and Large Arteries. Circulation, 2008, 118, 1276-1284.	1.6	295
30	Treatment of giant cell arteritis: Interleukin-6 as a biologic marker of disease activity. Arthritis and Rheumatism, 2000, 43, 1041.	6.7	277
31	Naive T Cell Maintenance and Function in Human Aging. Journal of Immunology, 2015, 194, 4073-4080.	0.4	271
32	Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. Journal of Experimental Medicine, 2013, 210, 2119-2134.	4.2	268
33	T cell development and receptor diversity during aging. Current Opinion in Immunology, 2005, 17, 468-475.	2.4	256
34	Regulatory T Cells and the Immune Aging Process: A Mini-Review. Gerontology, 2014, 60, 130-137.	1.4	255
35	Activation of Arterial Wall Dendritic Cells and Breakdown of Self-tolerance in Giant Cell Arteritis. Journal of Experimental Medicine, 2004, 199, 173-183.	4.2	253
36	Aging of the Immune System. Mechanisms and Therapeutic Targets. Annals of the American Thoracic Society, 2016, 13, S422-S428.	1.5	253

#	Article	IF	Citations
37	Successful and Maladaptive T Cell Aging. Immunity, 2017, 46, 364-378.	6.6	250
38	Mechanisms underlying T cell ageing. Nature Reviews Immunology, 2019, 19, 573-583.	10.6	250
39	Inhibition and Genetic Ablation of the B7/CD28 T-Cell Costimulation Axis Prevents Experimental Hypertension. Circulation, 2010, 122, 2529-2537.	1.6	249
40	Down-Regulation of CD28 Expression by TNF-α. Journal of Immunology, 2001, 167, 3231-3238.	0.4	238
41	Pathogen-Sensing Plasmacytoid Dendritic Cells Stimulate Cytotoxic T-Cell Function in the Atherosclerotic Plaque Through Interferon-α. Circulation, 2006, 114, 2482-2489.	1.6	230
42	Aging and T-cell diversitya˜†. Experimental Gerontology, 2007, 42, 400-406.	1.2	228
43	BLyS and APRIL in rheumatoid arthritis. Journal of Clinical Investigation, 2005, 115, 3083-3092.	3.9	225
44	Formation of New Vasa Vasorum in Vasculitis. American Journal of Pathology, 1999, 155, 765-774.	1.9	221
45	Immune aging and autoimmunity. Cellular and Molecular Life Sciences, 2012, 69, 1615-1623.	2.4	212
46	Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis and Rheumatism, 1998, 41, 623-633.	6.7	209
47	CD4+,CD28? T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis and Rheumatism, 2001, 44, 13-20.	6.7	208
48	Ectopic Germinal Center Formation in Rheumatoid Synovitis. Annals of the New York Academy of Sciences, 2003, 987, 140-149.	1.8	205
49	Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science Translational Medicine, 2016, 8, 331ra38.	5.8	201
50	Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis and Rheumatism, 1998, 41, 2108-2116.	6.7	198
51	Killer Cell Activating Receptors Function as Costimulatory Molecules on CD4+CD28null T Cells Clonally Expanded in Rheumatoid Arthritis. Journal of Immunology, 2000, 165, 1138-1145.	0.4	198
52	Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 291-301.	3.5	195
53	Activation of Human T Cells in Hypertension. Hypertension, 2016, 68, 123-132.	1.3	191
54	Hla–drb1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis and Rheumatism, 1994, 37, 514-520.	6.7	189

#	Article	IF	Citations
55	Influence of immune aging on vaccine responses. Journal of Allergy and Clinical Immunology, 2020, 145, 1309-1321.	1.5	187
56	Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. Journal of Clinical Investigation, 1999, 103, 1007-1013.	3.9	187
57	Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13471-13476.	3.3	185
58	Disease patterns and tissue cytokine profiles in giant cell arteritis. Arthritis and Rheumatism, 1997, 40, 19-26.	6.7	184
59	Epigenomics of human CD8 T cell differentiation and aging. Science Immunology, 2017, 2, .	5.6	181
60	Functional properties of CD4+CD28â ⁻ T cells in the aging immune system. Mechanisms of Ageing and Development, 1998, 102, 131-147.	2.2	177
61	Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E970-E979.	3.3	172
62	Immune activation caused by vascular oxidation promotes fibrosis and hypertension. Journal of Clinical Investigation, 2015, 126, 50-67.	3.9	170
63	Aging-related Deficiency of CD28 Expression in CD4+ T Cells Is Associated with the Loss of Gene-specific Nuclear Factor Binding Activity. Journal of Biological Chemistry, 1998, 273, 8119-8129.	1.6	169
64	Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity catalysts of autoimmunity and chronic inflammation. Arthritis Research, 2003, 5, 225.	2.0	168
65	Arterial wall injury in giant cell arteritis. Arthritis and Rheumatism, 1999, 42, 844-853.	6.7	164
66	Surgical Pathology of Noninfectious Ascending Aortitis: A Study of 45 Cases With Emphasis on an Isolated Variant. American Journal of Surgical Pathology, 2006, 30, 1150-1158.	2.1	164
67	CD8 T Cells Are Required for the Formation of Ectopic Germinal Centers in Rheumatoid Synovitis. Journal of Experimental Medicine, 2002, 195, 1325-1336.	4.2	163
68	TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. Journal of Experimental Medicine, 2006, 203, 239-250.	4.2	162
69	Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis. Circulation, 2018, 137, 1934-1948.	1.6	161
70	Homeostatic control of T-cell generation in neonates. Blood, 2003, 102, 1428-1434.	0.6	158
71	Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nature Reviews Cardiology, 2015, 12, 168-176.	6.1	158
72	Clonality and Longevity of CD4+CD28null T Cells Are Associated with Defects in Apoptotic Pathways. Journal of Immunology, 2000, 165, 6301-6307.	0.4	157

#	Article	lF	CITATIONS
73	Telomerase insufficiency in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4360-4365.	3.3	157
74	Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature, 1986, 323, 269-273.	13.7	156
75	Therapeutic effects of acetylsalicylic acid in giant cell arteritis. Arthritis and Rheumatism, 2002, 46, 457-466.	6.7	155
76	Induction of Hypertension and Peripheral Inflammation by Reduction of Extracellular Superoxide Dismutase in the Central Nervous System. Hypertension, 2010, 55, 277-283.	1.3	154
77	Immunosenescence, autoimmunity, and rheumatoid arthritis. Experimental Gerontology, 2003, 38, 833-841.	1.2	152
78	Trapping of Misdirected Dendritic Cells in the Granulomatous Lesions of Giant Cell Arteritis. American Journal of Pathology, 2002, 161, 1815-1823.	1.9	150
79	Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. Modern Pathology, 2017, 30, 788-796.	2.9	148
80	Regulation of T cell receptor signaling by activation-induced zinc influx. Journal of Experimental Medicine, 2011, 208, 775-785.	4.2	140
81	Ectopic Lymphoid Organogenesis. American Journal of Pathology, 2001, 159, 787-793.	1.9	137
82	Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. Atherosclerosis, 2006, 189, 408-413.	0.4	137
83	Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. Journal of Experimental Medicine, 2009, 206, 1435-1449.	4.2	137
84	Blocking the NOTCH Pathway Inhibits Vascular Inflammation in Large-Vessel Vasculitis. Circulation, 2011, 123, 309-318.	1.6	130
85	Synergistic Proinflammatory Effects of the Antiviral Cytokine Interferon- \hat{l}_{\pm} and Toll-Like Receptor 4 Ligands in the Atherosclerotic Plaque. Circulation, 2007, 116, 2043-2052.	1.6	129
86	Tissue-Destructive Macrophages in Giant Cell Arteritis. Circulation Research, 1999, 84, 1050-1058.	2.0	128
87	Modulation of CD28 expression with anti-tumor necrosis factor \hat{l}_{\pm} therapy in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 2996-3003.	6.7	126
88	Giant Cell Vasculitis Is a T Cell-Dependent Disease. Molecular Medicine, 1997, 3, 530-543.	1.9	125
89	T-cell aging in rheumatoid arthritis. Current Opinion in Rheumatology, 2014, 26, 93-100.	2.0	123
90	CD28 loss in senescent CD4+ T cells: reversal by interleukin-12 stimulation. Blood, 2003, 101, 3543-3549.	0.6	121

#	Article	lF	CITATIONS
91	Toll-Like Receptors 4 and 5 Induce Distinct Types of Vasculitis. Circulation Research, 2009, 104, 488-495.	2.0	121
92	Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovascular Research, 2018, 114, 1547-1563.	1.8	121
93	De Novo Expression of Killer Immunoglobulin-Like Receptors and Signaling Proteins Regulates the Cytotoxic Function of CD4 T Cells in Acute Coronary Syndromes. Circulation Research, 2003, 93, 106-113.	2.0	120
94	Dendritic cells in atherosclerotic disease. Clinical Immunology, 2010, 134, 25-32.	1.4	120
95	IFN- \hat{l}^3 and IL-17: the two faces of T-cell pathology in giant cell arteritis. Current Opinion in Rheumatology, 2011, 23, 43-49.	2.0	120
96	Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Research in Cardiology, 2007, 102, 123-132.	2.5	118
97	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29.	1.6	118
98	The Immunopathology of Giant Cell Arteritis. Journal of Neuro-Ophthalmology, 2012, 32, 259-265.	0.4	113
99	Signaling pathways in aged T cells – A reflection of T cell differentiation, cell senescence and host environment. Seminars in Immunology, 2012, 24, 365-372.	2.7	112
100	Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. Cell Reports, 2016, 14, 1218-1231.	2.9	111
101	Central Role of Thrombospondin-1 in the Activation and Clonal Expansion of Inflammatory T Cells. Journal of Immunology, 2000, 164, 2947-2954.	0.4	109
102	Production of Cytokines and Metalloproteinases in Rheumatoid Synovitis Is T Cell Dependent. Clinical Immunology, 1999, 90, 65-78.	1.4	107
103	The Janus Head of T Cell Aging – Autoimmunity and Immunodeficiency. Frontiers in Immunology, 2013, 4, 131.	2.2	107
104	NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. Journal of Clinical Investigation, 2016, 126, 1953-1967.	3.9	107
105	The Repertoire of CD4+ CD28â^' T Cells in Rheumatoid Arthritis. Molecular Medicine, 1996, 2, 608-618.	1.9	106
106	Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. Seminars in Immunopathology, 1998, 20, 5-22.	4.0	106
107	Autophagy in autoimmune disease. Journal of Molecular Medicine, 2015, 93, 707-717.	1.7	106
108	Macrophages in vascular inflammation – From atherosclerosis to vasculitis. Autoimmunity, 2015, 48, 139-151.	1.2	106

#	Article	IF	Citations
109	Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Current Opinion in Immunology, 2017, 46, 112-120.	2.4	106
110	Interleukin 12 Induces T-Cell Recruitment Into the Atherosclerotic Plaque. Circulation Research, 2006, 98, 524-531.	2.0	105
111	The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. Cell Metabolism, 2019, 30, 477-492.e6.	7.2	105
112	Immunopathways in giant cell arteritis and polymyalgia rheumatica. Autoimmunity Reviews, 2004, 3, 46-53.	2.5	104
113	Visual Manifestations in Giant Cell Arteritis: Trend over 5 Decades in a Population-based Cohort. Journal of Rheumatology, 2015, 42, 309-315.	1.0	103
114	Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature Immunology, 2017, 18, 1025-1034.	7.0	103
115	MMP (Matrix Metalloprotease)-9–Producing Monocytes Enable T Cells to Invade the Vessel Wall and Cause Vasculitis. Circulation Research, 2018, 123, 700-715.	2.0	103
116	Telomeres, immune aging and autoimmunity. Experimental Gerontology, 2006, 41, 246-251.	1.2	100
117	Formation of the Killer Ig-Like Receptor Repertoire on CD4+CD28null T Cells. Journal of Immunology, 2002, 168, 3839-3846.	0.4	98
118	Thrombospondin 2 Functions as an Endogenous Regulator of Angiogenesis and Inflammation in Rheumatoid Arthritis. American Journal of Pathology, 2004, 165, 2087-2098.	1.9	98
119	N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nature Immunology, 2019, 20, 313-325.	7.0	97
120	Emergence of oligoclonal t cell populations following therapeutic t cell depletion in rheumatoid arthritis. Arthritis and Rheumatism, 1995, 38, 1242-1251.	6.7	96
121	Molecular Fingerprint of Interferon-l̂3 Signaling in Unstable Angina. Circulation, 2001, 103, 1509-1514.	1.6	96
122	Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research and Therapy, 2009, 11, 249.	1.6	96
123	Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28â^' T cells. European Journal of Immunology, 1997, 27, 1082-1090.	1.6	95
124	Inhibitory CD8+ T cells in autoimmune disease. Human Immunology, 2008, 69, 781-789.	1.2	93
125	Rejuvenating the immune system in rheumatoid arthritis. Nature Reviews Rheumatology, 2009, 5, 583-588.	3.5	93
126	The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. Science Translational Medicine, 2017, 9, .	5.8	93

#	Article	IF	CITATIONS
127	Management of Central Retinal Artery Occlusion: A Scientific Statement From the American Heart Association. Stroke, 2021, 52, e282-e294.	1.0	92
128	Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis and Rheumatism, 2008, 58, 990-1000.	6.7	91
129	Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E879-88.	3.3	90
130	Chronic inflammation and aging: DNA damage tips the balance. Current Opinion in Immunology, 2012, 24, 488-493.	2.4	90
131	Immunometabolism in the development of rheumatoid arthritis. Immunological Reviews, 2020, 294, 177-187.	2.8	90
132	Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. PLoS ONE, 2015, 10, e0133627.	1.1	90
133	T-cell regulation in rheumatoid arthritis. Current Opinion in Rheumatology, 2004, 16, 212-217.	2.0	89
134	Telomeres and Immunological Diseases of Aging. Gerontology, 2010, 56, 390-403.	1.4	89
135	Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity, 2016, 45, 903-916.	6.6	88
136	Vascular Dendritic Cells in Giant Cell Arteritis. Annals of the New York Academy of Sciences, 2005, 1062, 195-208.	1.8	87
137	T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 1392-1401.	6.7	85
138	Immune checkpoint dysfunction in large and medium vessel vasculitis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1052-H1059.	1.5	85
139	Genetic risk factors in inflammatory abdominal aortic aneurysms: Polymorphic residue 70 in the HLA-DR B1 gene as a key genetic element. Journal of Vascular Surgery, 1997, 25, 356-364.	0.6	81
140	Unchecked CD70 Expression on T Cells Lowers Threshold for T Cell Activation in Rheumatoid Arthritis. Journal of Immunology, 2007, 179, 2609-2615.	0.4	81
141	Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Annals of the Rheumatic Diseases, 2018, 77, 1053-1062.	0.5	80
142	Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Reports, 2018, 25, 2148-2162.e5.	2.9	80
143	Vessel Wall–Embedded Dendritic Cells Induce T-Cell Autoreactivity and Initiate Vascular Inflammation. Circulation Research, 2008, 102, 546-553.	2.0	79
144	T-Cell Immunity in Acute Coronary Syndromes. Mayo Clinic Proceedings, 2001, 76, 1011-1020.	1.4	76

#	Article	IF	CITATIONS
145	Molecular Basis for the Loss of CD28 Expression in Senescent T Cells. Journal of Biological Chemistry, 2002, 277, 46940-46949.	1.6	76
146	Giant cell arteritis: immune and vascular aging as disease risk factors. Arthritis Research and Therapy, 2011, 13, 231.	1.6	75
147	Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. Journal of Clinical Investigation, 2017, 127, 2725-2738.	3.9	75
148	Large-vessel vasculitis. Nature Reviews Disease Primers, 2021, 7, 93.	18.1	74
149	Stimulatory Killer Ig-Like Receptors Modulate T Cell Activation through DAP12-Dependent and DAP12-Independent Mechanisms. Journal of Immunology, 2004, 173, 3725-3731.	0.4	73
150	Cell-Based Immunotherapy with Suppressor CD8+ T Cells in Rheumatoid Arthritis. Journal of Immunology, 2005, 174, 7292-7301.	0.4	73
151	T Cell Recognition and Killing of Vascular Smooth Muscle Cells in Acute Coronary Syndrome. Circulation Research, 2006, 98, 1168-1176.	2.0	72
152	Is hypertension an immunologic disease?. Current Cardiology Reports, 2008, 10, 464-469.	1.3	72
153	IL-7– and IL-15–Mediated TCR Sensitization Enables T Cell Responses to Self-Antigens. Journal of Immunology, 2013, 190, 1416-1423.	0.4	72
154	Selective Activation of the c-Jun NH2-terminal Protein Kinase Signaling Pathway by Stimulatory KIR in the Absence of KARAP/DAP12 in CD4+ T Cells. Journal of Experimental Medicine, 2003, 197, 437-449.	4.2	71
155	Association of HLA–C3 and smoking with vasculitis in patients with rheumatoid arthritis. Arthritis and Rheumatism, 2006, 54, 2776-2783.	6.7	71
156	Immune Aging and Rheumatoid Arthritis. Rheumatic Disease Clinics of North America, 2010, 36, 297-310.	0.8	71
157	Hallmarks of the aging Tâ€cell system. FEBS Journal, 2021, 288, 7123-7142.	2.2	70
158	ERK-Dependent T Cell Receptor Threshold Calibration in Rheumatoid Arthritis. Journal of Immunology, 2009, 183, 8258-8267.	0.4	67
159	Mechanisms underlying the formation of the T cell receptor repertoire in rheumatoid arthritis. Immunity, 1995, 2, 597-605.	6.6	66
160	Toll-like receptors in giant cell arteritis. Clinical Immunology, 2005, 115, 38-46.	1.4	66
161	Mechanisms shaping the $na\tilde{A}$ ve T cell repertoire in the elderly $\hat{a}\in$ Thymic involution or peripheral homeostatic proliferation?. Experimental Gerontology, 2014, 54, 71-74.	1.2	66
162	CD8+CD45RA+CCR7+FOXP3+ T Cells with Immunosuppressive Properties: A Novel Subset of Inducible Human Regulatory T Cells. Journal of Immunology, 2012, 189, 2118-2130.	0.4	65

#	Article	IF	CITATIONS
163	T Cellââ,¬â€œMacrophage Interactions and Granuloma Formation in Vasculitis. Frontiers in Immunology, 2014, 5, 432.	2.2	65
164	The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. Journal of Leukocyte Biology, 2018, 103, 565-575.	1.5	65
165	Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 652771.	2.2	65
166	Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Science Translational Medicine, 2016, 8, 332ra46.	5.8	64
167	Functional Disruption of the CD28 Gene Transcriptional Initiator in Senescent T Cells. Journal of Biological Chemistry, 2001, 276, 2565-2570.	1.6	63
168	Synoviocyte-Mediated Expansion of Inflammatory T Cells in Rheumatoid Synovitis Is Dependent on CD47-Thrombospondin 1 Interaction. Journal of Immunology, 2003, 171, 1732-1740.	0.4	63
169	Lymphocyte generation and population homeostasis throughout life. Seminars in Hematology, 2017, 54, 33-38.	1.8	63
170	Inherited and noninherited risk factors in rheumatoid arthritis. Current Opinion in Rheumatology, 1995, 7, 206-213.	2.0	62
171	Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals. PLoS Pathogens, 2016, 12, e1005892.	2.1	61
172	Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight, 2018, 3, .	2.3	60
173	T-cell-targeted therapies in rheumatoid arthritis. Nature Clinical Practice Rheumatology, 2006, 2, 201-210.	3.2	59
174	Inflammation and cardiac outcome. Current Opinion in Infectious Diseases, 2011, 24, 259-264.	1.3	59
175	Tissue trafficking patterns of effector memory CD4+ T cells in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 3839-3849.	6.7	58
176	Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Annals of the New York Academy of Sciences, 2012, 1247, 69-82.	1.8	58
177	Regulation of miR-181a expression in T cell aging. Nature Communications, 2018, 9, 3060.	5.8	58
178	Sonography in Giant-Cell Arteritis. New England Journal of Medicine, 1997, 337, 1385-1386.	13.9	57
179	DNAâ€dependent protein kinase catalytic subunit mediates Tâ€cell loss in rheumatoid arthritis. EMBO Molecular Medicine, 2010, 2, 415-427.	3.3	57
180	Telomere dysfunction, autoimmunity and aging. , 2011, 2, 524-37.		57

#	Article	IF	CITATIONS
181	Giant Cell Arteritis: New Concepts in Pathogenesis and Implications for Management. American Journal of Ophthalmology, 1997, 123, 392-395.	1.7	56
182	Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis—Similarities and Differences. Current Rheumatology Reports, 2020, 22, 68.	2.1	56
183	T-cell responses in rheumatoid arthritis. Current Opinion in Rheumatology, 1999, 11, 210-217.	2.0	55
184	Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin–like receptors. Blood, 2006, 107, 4449-4457.	0.6	54
185	T Cell Receptor Repertoire in Rheumatoid Arthritis. International Reviews of Immunology, 1998, 17, 339-363.	1.5	53
186	The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy, 2014, 10, 382-383.	4.3	53
187	DNA damage, metabolism and aging in pro-inflammatory T cells. Experimental Gerontology, 2018, 105, 118-127.	1.2	53
188	Vascular damage in giant cell arteritis. Autoimmunity, 2009, 42, 596-604.	1.2	51
189	Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T Cells. Cell Metabolism, 2020, 32, 967-980.e5.	7.2	51
190	Distinct Transcriptional Control Mechanisms of Killer Immunoglobulin-like Receptors in Natural Killer (NK) and in T Cells. Journal of Biological Chemistry, 2005, 280, 24277-24285.	1.6	50
191	Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine, 2018, 125, 36-43.	1.3	50
192	The Transcription Factor TCF1 in T Cell Differentiation and Aging. International Journal of Molecular Sciences, 2020, 21, 6497.	1.8	49
193	Genetic similarity in inflammatory and degenerative abdominal aortic aneurysms: A study of human leukocyte antigen class II disease risk genes. Journal of Vascular Surgery, 2001, 34, 84-89.	0.6	48
194	Adaptive Immunity Dysregulation in AcuteÂCoronary Syndromes. Journal of the American College of Cardiology, 2016, 68, 2107-2117.	1.2	48
195	Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nature Immunology, 2021, 22, 1551-1562.	7.0	47
196	Costimulatory Pathways in Rheumatoid Synovitis and T-Cell Senescence. Annals of the New York Academy of Sciences, 2005, 1062, 182-194.	1.8	46
197	Promoter choice and translational repression determine cell type–specific cell surface density of the inhibitory receptor CD85j expressed on different hematopoietic lineages. Blood, 2010, 115, 3278-3286.	0.6	46
198	Epigenetics of T cell aging. Journal of Leukocyte Biology, 2018, 104, 691-699.	1.5	46

#	Article	IF	Citations
199	Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. Frontiers in Immunology, 2020, 11, 585168.	2.2	46
200	Human leukocyte antigen class II immune response genes, female gender, and cigarette smoking as risk and modulating factors in abdominal aortic aneurysms. Journal of Vascular Surgery, 2002, 35, 988-993.	0.6	45
201	Age-Associated Failure To Adjust Type I IFN Receptor Signaling Thresholds after T Cell Activation. Journal of Immunology, 2015, 195, 865-874.	0.4	45
202	The treatment of giant cell arteritis. Reviews in Neurological Diseases, 2008, 5, 140-52.	0.3	45
203	Systemic Monocyte and T-Cell Activation in a Patient With Human Parvovirus B19 Infection. Mayo Clinic Proceedings, 1995, 70, 261-265.	1.4	44
204	Statins reduce endothelial cell apoptosis via inhibition of TRAIL expression on activated CD4 T cells in acute coronary syndrome. Atherosclerosis, 2010, 213, 33-39.	0.4	44
205	Opposite effects of CX3CR1 receptor polymorphisms V249I and T280M on the development of acute coronary syndrome. Thrombosis and Haemostasis, 2005, 93, 949-954.	1.8	43
206	B cells in rheumatoid synovitis. Arthritis Research and Therapy, 2005, 7, S9.	1.6	43
207	Cytokines, growth factors and proteases in medium and large vessel vasculitis. Clinical Immunology, 2019, 206, 33-41.	1.4	43
208	Treating autoimmune disease by targeting CD8 ⁺ T suppressor cells. Expert Opinion on Biological Therapy, 2009, 9, 951-965.	1.4	42
209	Giant Cell Arteritis: From Pathogenesis to Therapeutic Management. Current Treatment Options in Rheumatology, 2016, 2, 126-137.	0.6	42
210	PKC-epsilon and TLR4 synergistically regulate resistin-mediated inflammation in human macrophages. Atherosclerosis, 2017, 259, 51-59.	0.4	42
211	Transcription factor networks in aged naÃ⁻ve CD4 T cells bias lineage differentiation. Aging Cell, 2019, 18, e12957.	3.0	42
212	Determinants governing T cell receptor $\hat{l}\pm/\hat{l}^2$ -chain pairing in repertoire formation of identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 532-540.	3.3	42
213	Interplay of T lymphocytes and HLA-DR molecules in rheumatoid arthritis. Current Opinion in Rheumatology, 1993, 5, 169-177.	2.0	41
214	T cells in arteritis and atherosclerosis. Current Opinion in Lipidology, 2008, 19, 469-477.	1.2	41
215	Tumor Necrosis Factor- \hat{l}_{\pm} and CD80 Modulate CD28 Expression through a Similar Mechanism of T-cell Receptor-independent Inhibition of Transcription. Journal of Biological Chemistry, 2004, 279, 29130-29138.	1.6	40
216	High-throughput sequencing insights into T-cell receptor repertoire diversity in aging. Genome Medicine, 2015, 7, 117.	3.6	40

#	Article	IF	CITATIONS
217	Functional pathways regulated by microRNA networks in CD8 Tâ€cell aging. Aging Cell, 2019, 18, e12879.	3.0	40
218	Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Frontiers in Immunology, 2020, 11, 587089.	2.2	40
219	Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. Joint Bone Spine, 2017, 84, 421-426.	0.8	39
220	The transcription factor RFX5 coordinates antigen-presenting function and resistance to nutrient stress in synovial macrophages. Nature Metabolism, 2022, 4, 759-774.	5.1	39
221	Dynamic Immune Cell Accumulation During Flow-Induced Atherogenesis in Mouse Carotid Artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 623-632.	1.1	38
222	Rheumatoid Vasculitis Manifesting as Intra-abdominal Hemorrhage. Mayo Clinic Proceedings, 1995, 70, 565-569.	1.4	37
223	Structural and Functional Characterization of Hla-Dr Molecules Circulating in the Serum. Autoimmunity, 1991, 8, 289-296.	1.2	36
224	Clonally Expanded CD8 T Cells in Patients with Polymyalgia Rheumatica and Giant Cell Arteritis. Clinical Immunology and Immunopathology, 1996, 79, 263-270.	2.1	36
225	Epigenetic mechanisms of age-dependent KIR2DL4 expression in T cells. Journal of Leukocyte Biology, 2008, 84, 824-834.	1.5	35
226	Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nature Communications, 2021, 12, 907.	5.8	35
227	Baricitinib for relapsing giant cell arteritis: a prospective open-label 52-week pilot study. Annals of the Rheumatic Diseases, 2022, 81, 861-867.	0.5	35
228	NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. Journal of Clinical Investigation, 2021, 131, .	3.9	34
229	Reactive Nitrogen Intermediates in Giant Cell Arteritis. American Journal of Pathology, 2002, 161, 115-123.	1.9	33
230	FOXO1 deficiency impairs proteostasis in aged T cells. Science Advances, 2020, 6, eaba1808.	4.7	33
231	Cytokines in giant-cell arteritis Cleveland Clinic Journal of Medicine, 2002, 69, SII91-SII91.	0.6	32
232	Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging. Frontiers in Immunology, 2017, 8, 692.	2.2	31
233	Innate and Adaptive Immunity in Giant Cell Arteritis. Frontiers in Immunology, 2020, 11, 621098.	2.2	31
234	Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight, 2020, 5, .	2.3	31

#	Article	IF	CITATIONS
235	Multisystem interactions in the pathogenesis of vasculitis. Current Opinion in Rheumatology, 1997, 9, 3-11.	2.0	30
236	TLR-mediated induction of negative regulatory ligands on dendritic cells. Journal of Molecular Medicine, 2008, 86, 443-455.	1.7	30
237	Synoviocyte Stimulation by the LFA-1–Intercellular Adhesion Molecule-2–Ezrin–Akt Pathway in Rheumatoid Arthritis. Journal of Immunology, 2008, 180, 1971-1978.	0.4	30
238	CD28 Signaling Controls MetabolicÂFitness of Pathogenic T Cells in Medium and LargeÂVesselÂVasculitis. Journal of the American College of Cardiology, 2019, 73, 1811-1823.	1.2	30
239	Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. Cell Reports, 2019, 29, 2202-2216.e5.	2.9	30
240	The metabolic signature of T cells in rheumatoid arthritis. Current Opinion in Rheumatology, 2020, 32, 159-167.	2.0	30
241	Lymphoma in rheumatoid arthritis: An immune system set up for failure. Arthritis and Rheumatism, 2006, 54, 685-689.	6.7	29
242	K-RAS GTPase- and B-RAF kinase–mediated T-cell tolerance defects in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1629-37.	3.3	29
243	Giant-Cell Arteritis and Polymyalgia Rheumatica. New England Journal of Medicine, 2014, 371, 1652-1653.	13.9	29
244	Metabolic reprogramming in memory CD4 T cell responses of old adults. Clinical Immunology, 2019, 207, 58-67.	1.4	29
245	Functional Domains on HLA-DR Molecules: Implications for the Linkage of HLA-DR Genes to Different Autoimmune Diseases. Clinical Immunology and Immunopathology, 1994, 70, 91-98.	2.1	28
246	Neutrophil Extracellular Traps Induce Tissue-Invasive Monocytes in Granulomatosis With Polyangiitis. Frontiers in Immunology, 2019, 10, 2617.	2.2	28
247	Immunosuppression in Atherosclerosis. Circulation, 2006, 114, 1901-1904.	1.6	27
248	Role of Increased Guanosine Triphosphate Cyclohydrolase-1 Expression and Tetrahydrobiopterin Levels upon T Cell Activation. Journal of Biological Chemistry, 2011, 286, 13846-13851.	1.6	27
249	The diagnosis of giant cell arteritis. Reviews in Neurological Diseases, 2007, 4, 128-42.	0.3	27
250	T and B cell-dependent pathways in rheumatoid arthritis. Current Opinion in Rheumatology, 1995, 7, 214-221.	2.0	25
251	Accelerated atherosclerosis in patients with chronic inflammatory rheumatologic conditions. International Journal of Clinical Rheumatology, 2015, 10, 365-381.	0.3	25
252	HLA Polymorphisms and T Cells in Rheumatoid Arthritis. International Reviews of Immunology, 1999, 18, 37-59.	1.5	24

#	Article	IF	CITATIONS
253	Anti-Psoriatic Drug Anthralin Activates JNK via Lipid Peroxidation: Mononuclear Cells are More Sensitive than Keratinocytes. Journal of Investigative Dermatology, 2000, 114, 688-692.	0.3	24
254	Soluble Hia-Dr Molecules in Patients with Hla Class II Versus Class I Associated Disorders. Autoimmunity, 1991, 8, 281-287.	1.2	23
255	The repertoire of rheumatoid factor–producing b cells in normal subjects and patients with rheumatoid arthritis. Arthritis and Rheumatism, 1993, 36, 1061-1069.	6.7	23
256	Vasculitis in rheumatoid arthritis. Current Opinion in Rheumatology, 1994, 6, 290-294.	2.0	23
257	Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology, 2011, 50, 252-260.	0.9	23
258	miR-181a-regulated pathways in T-cell differentiation and aging. Immunity and Ageing, 2021, 18, 28.	1.8	22
259	Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Science Immunology, 2021, 6, .	5.6	22
260	Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. Journal of Clinical Investigation, 2020, 130, 3422-3436.	3.9	22
261	Age as a risk factor in vasculitis. Seminars in Immunopathology, 2022, 44, 281-301.	2.8	22
262	Mapping of allospecific T-cell recognition sites encoded by the HLA-DR4 \hat{l}^2 1-chain. Human Immunology, 1989, 24, 133-143.	1.2	20
263	Pathomechanisms in rheumatoid arthritis – time for a string theory?. Journal of Clinical Investigation, 2006, 116, 869-871.	3.9	20
264	Selection of T cell receptor $\hat{V^2}$ elements by HLA-DR determinants predisposing to Rheumatoid Arthritis. Arthritis and Rheumatism, 1992, 35, 990-998.	6.7	18
265	IMMUNOSUPPRESSION BY ANTI-CD4 TREATMENT IN VIVO PERSISTENCE OF SECONDARY ANTIVIRAL IMMUNE RESPONSES. Transplantation, 1989, 47, 1034-1038.	0.5	17
266	Insufficient Deactivation of the Protein Tyrosine Kinase Lck Amplifies T-Cell Responsiveness in Acute Coronary Syndrome. Circulation Research, 2010, 106, 769-778.	2.0	17
267	Histone deficiency and accelerated replication stress in T cell aging. Journal of Clinical Investigation, 2021, 131, .	3.9	17
268	Metabolic Fitness of T Cells in Autoimmune Disease. Immunometabolism, 2020, 2, .	0.7	17
269	Premature immunosenescence in rheumatoid arthritis. Journal of Rheumatology, 2002, 29, 1141-6.	1.0	17
270	Treatment of chronic inflammatory diseases with biologic agents: Opportunities and risks for the elderly. Experimental Gerontology, 2006, 41, 1250-1255.	1.2	16

#	Article	IF	CITATIONS
271	Finding Balance: T cell Regulatory Receptor Expression during Aging. , 2011, 2, 398-413.		16
272	HLA-DRB1 molecules and antigenic experience shape the repertoire of CD4 T cells. Human Immunology, 1995, 44, 203-209.	1.2	15
273	The cell-surface 5′-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Reports, 2021, 37, 109981.	2.9	15
274	Immunopathologic aspects of rheumatoid arthritis: who is the conductor and who plays the immunologic instrument?. Journal of rheumatology Supplement, The, 2007, 79, 9-14.	2.2	15
275	Targets of Immune Regeneration in Rheumatoid Arthritis. Mayo Clinic Proceedings, 2014, 89, 563-575.	1.4	14
276	T-Cell Aging-Associated Phenotypes in Autoimmune Disease. Frontiers in Aging, 2022, 3, .	1.2	14
277	Serpin Treatment Suppresses Inflammatory Vascular Lesions in Temporal Artery Implants (TAI) from Patients with Giant Cell Arteritis. PLoS ONE, 2015, 10, e0115482.	1.1	12
278	IMMUNOSUPPRESSION BY ANTI-CD4 TREATMENT IN VIVO CELLULAR AND HUMORAL RESPONSES TO ALLOANTIGENS. Transplantation, 1989, 47, 1039-1042.	0.5	11
279	Bi-directional modulation of T cell-dependent antibody production by prostaglandin E2. International Immunology, 2002, 14, 69-77.	1.8	11
280	Dampened ERK signaling in hematopoietic progenitor cells in rheumatoid arthritis. Clinical Immunology, 2012, 143, 73-82.	1.4	11
281	Geographical variations in ocular and extra-ocular manifestations in Behçet's disease. European Journal of Rheumatology, 2019, 6, 199-206.	1.3	10
282	Fractalkine receptor polymorphisms V2491 and T280M as genetic risk factors for restenosis. Thrombosis and Haemostasis, 2005, 94, 1251-6.	1.8	10
283	Regulatory T Cells in Autoimmune Vasculitis. Frontiers in Immunology, 2022, 13, 844300.	2.2	10
284	Selective activation of VH3A10+ rheumatoid factor producing B cells by staphylococcal enterotoxin D. International Immunology, 1995, 7, 425-434.	1.8	9
285	T Cell Receptor Germline Gene Segments and HLA Haplotypes Control the Length of the CDR3 of Human T Cell Receptor Î ² Chains. Cellular Immunology, 1996, 168, 235-242.	1.4	9
286	Understanding T cell aging to improve anti-viral immunity. Current Opinion in Virology, 2021, 51, 127-133.	2.6	9
287	Gene Conversion A Mechanism to Explain HLA-D Region and Disease Association. Annals of the New York Academy of Sciences, 1986, 475, 24-31.	1.8	8
288	Refractory Giant Cell Arteritis Complicated by Vision Loss From Optic Atrophy and Maculopathy Associated With Pachymeningitis. Journal of Neuro-Ophthalmology, 2018, 38, 17-23.	0.4	8

#	Article	IF	CITATIONS
289	A Mitochondrial Checkpoint in Autoimmune Disease. Cell Metabolism, 2018, 28, 185-186.	7.2	8
290	The GSK3 \hat{I}^2 - \hat{I}^2 -catenin-TCF1 pathway improves naive T cell activation in old adults by upregulating miR-181a. Npj Aging and Mechanisms of Disease, 2021, 7, 4.	4.5	8
291	Immune And Inflammatory Mechanisms Mediate Cardiovascular Diseases From Head To Toe. Cardiovascular Research, 2021, 117, 2503-2505.	1.8	8
292	Correlation between HLA-DR Sequence Polymorphisms and Rheumatoid Factor Production. Annals of the New York Academy of Sciences, 1997, 815, 353-356.	1.8	6
293	Lysosomes in T Cell Immunity and Aging. Frontiers in Aging, 2021, 2, .	1.2	6
294	Eosinophil-active cytokine from mononuclear cells cultured with L-tryptophan products: An unexpected consequence of endotoxin contamination. Journal of Allergy and Clinical Immunology, 1995, 95, 1261-1267.	1.5	5
295	Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease., 2022, 1, 634-648.		5
296	Cloning of human alloreactive T cells. Methods in Enzymology, 1987, 150, 333-341.	0.4	4
297	The T-cell receptor $\hat{V^2}$ 6 gene usage in alloreactive T-cell responses. Human Immunology, 1995, 42, 72-80.	1.2	4
298	Current ideas on the role of HLA molecules in human Diseases. Clinical Immunology Newsletter, 1996, 16, 14-21.	0.1	4
299	Global Transcriptomic Profiling Identifies Differential Gene Expression Signatures Between Inflammatory and Noninflammatory Aortic Aneurysms. Arthritis and Rheumatology, 2022, 74, 1376-1386.	2.9	4
300	Granulomatosis with Polyangiitis (Wegener's). , 0, , 238-251.		3
301	IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight, 2022, 7, .	2.3	3
302	Cytokines in Polymyalgia and Giant Cell Arteritis. Annals of Internal Medicine, 1995, 122, 634.	2.0	2
303	T-CELL DERIVED LYMPHOKINES AS REGULATORS OF CHRONIC INFLAMMATION. American Journal of Therapeutics, 1996, 3, 109-114.	0.5	2
304	Lymphocytes T pro-inflammatoires et anti-inflammatoires dans l'artérite à cellules géantes. Revue Du Rhumatisme (Edition Francaise), 2017, 84, 94-100.	0.0	2
305	T cell aging in hypertension. Cardiovascular Research, 2021, 117, 21-23.	1.8	1
306	Polymyalgia rheumatica and giant cell arteritis., 2015,, 1300-1309.		1

#	Article	IF	CITATIONS
307	Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis. EBioMedicine, 2022, 76, 103825.	2.7	1
308	Cellular immune responses to Borrelia burgdorferi in Lyme disease. Clinical Immunology Newsletter, 1991, 11, 118-124.	0.1	0
309	Superantigens, VHGene Polymorphism, and Rheumatoid Factor (RF) Production. Annals of the New York Academy of Sciences, 1997, 815, 357-360.	1.8	0
310	HLA-DRB1 haplotype did not affect the medium-term results of total knee arthroplasty in patients with rheumatoid arthritis. Modern Rheumatology, 2004, 14, 37-42.	0.9	0
311	Large and Medium Vessel Vasculitides. , 2014, , 1087-1103.		0
312	Editorial: Vascular Inflammation in Systemic Autoimmunity. Frontiers in Immunology, 2016, 7, 471.	2.2	0
313	Response to Comment on "Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination― Science Translational Medicine, 2017, 9, .	5.8	0
314	Granulomatous Inflammation. , 2018, , 303-356.		0
315	Large-Vessel Vasculitides. , 2019, , 809-824.e1.		0
316	Large and Medium-Vessel Vasculitides. , 2020, , 1313-1334.		0
317	Large and Medium Vessel Vasculitides. , 2006, , 921-934.		0
318	Innate Immunity in Atherosclerosis. , 0, , 136-146.		0
319	Vascular Development. , 0, , 1-14.		0
320	Large-vessel vasculitides. , 2013, , 716-727.		0
321	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Cell Biology, 2016, 212, 2126OIA43.	2.3	0
322	Occurrence of giant cell arteritissuddenly. Transactions of the American Ophthalmological Society, 2007, 105, 141-4; discussion 144-5.	1.4	0
323	HLA-DRB1 haplotype did not affect the medium-term results of total knee arthroplasty in patients with rheumatoid arthritis. Modern Rheumatology, 2004, 14, 37-42.	0.9	0
324	Abstract 424: Hyper-Inflammatory Macrophages in Coronary Artery Disease and Rheumatoid Arthritis; A Signature of CCL18, Krüppel-like Factor 2 and 4 and Oxidative Stress Response Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0