Roy Goodacre

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8249060/publications.pdf
Version: 2024-02-01

1 Proposed minimum reporting standards for chemical analysis．Metabolomics，2007，3，211－221．

Procedures for large－scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry．Nature Protocols，2011，6，1060－1083．

4 Metabolomics by numbers：acquiring and understanding global metabolite data．Trends in Biotechnology，2004，22，245－252．

6 Systems level studies of mammalian metabolomes：the roles of mass spectrometry and nuclear magnetic resonance spectroscopy．Chemical Society Reviews，2011，40，387－426．

```
7 A tutorial review: Metabolomics and partial least squares-discriminant analysis â€ € a marriage of
7 A tutorial review: Metabolomics and partial least squares-discriminant analysis â
```

On Splitting Training and Validation Set：A Comparative Study of Cross－Validation，Bootstrap and
Systematic Sampling for Estimating the Generalization Performance of Supervised Learning．Journal of
Analysis and Testing，2018，2，249－262．
19
20

20 Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan
The role of reporting standards for metabolite annotation and identification in metabolomic studies.
GigaScience, $2013,2,13$.

22 The Metabolomics Standards Initiative. Nature Biotechnology, 2007, 25, 846-848.

23	Global Metabolic Profiling of <i> Escherichia coli</i> Cultures:â€\%o an Evaluation of Methods for Quenching and Extraction of Intracellular Metabolites. Analytical Chemistry, 2008, 80, 2939-2948.	3.2	293
24	Detection of the Dipicolinic Acid Biomarker inBacillusSpores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 2000, 72, 119-127.	3.2	292
25	The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 2011, 85, 5-17.	1.9	289

A proposed framework for the description of plant metabolomics experiments and their results.
Nature Biotechnology, 2004, 22, 1601-1606.
9.4

283
Rapid and Quantitative Detection of the Microbial Spoilage of Meat by Fourier Transform Inf
Spectroscopy and Machine Learning. Applied and Environmental Microbiology, 2002, 68, 282

$28 \quad$| Genetic algorithms as a method for variable selection in multiple linear regression and partia |
| :--- |
| squares regression, with applications to pyrolysis mass spectrometry. Analytica Chimica Act |
| 348, 71-86. |

29 Mass spectrometry tools and metabolite-specific databases for molecular identification in
metabolomics. Analyst, The, 2009, 134, 1322.

30 Surface-Enhanced Raman Spectroscopy for Bacterial Discrimination Utilizing a Scanning Electron
3.2

231
Microscope with a Raman Spectroscopy Interface. Analytical Chemistry, 2004, 76, 5198-5202.

Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discussions,
Surface-enhanced Ran
21
$2006,132,281-292$.
1.6

222

32 Metabolomics of a Superorganism. Journal of Nutrition, 2007, 137, 259S-266S.
1.3

220
33 Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 2003, 62, 919-928.

1.4

210

An introduction to liquid chromatographyâ $€$ "mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 2010, 21, 33-47.

[^0]1.4

202

Physiologia Plantarum, 2008, 132, 117-135.
New cofactor supports $\hat{\underline{l}} \pm, \hat{\imath} 2$-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature, 2015,
$522,497-501$.

Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance
38 Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters,

Point-and-shoot: rapid quantitative detection methods for on-site food fraud analysis â€" moving out of the laboratory and into the food supply chain. Analytical Methods, 2015, 7, 9401-9414.
1.3
Rapid Differentiation of Closely Related <i>Candida</i> Species and Strains by Pyrolysis-Mass
Spectrometry and Fourier Transform-Infrared Spectroscopy. Journal of Clinical Microbiology, 1998,
$36,367-374$.
44

Exhaled breath analysis: a review of â€~breath-takingâ $€^{T M}$ methods for off-line analysis. Metabolomics, 2017, 13, 110.

45	Ultrasensitive Colorimetric Detection of Murine Norovirus Using NanoZyme Aptasensor. Analyt Chemistry, 2019, 91, 3270-3276.
46	Automated workflows for accurate mass-based putative metabolite identification in LC/MS-deriver metabolomic datasets. Bioinformatics, 2011, 27, 1108-1112.
47	SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Analytical Chemistry, 2017, 89, 12666-12673.

Development and Performance of a Gas Chromatographyâ^Time-of-Flight Mass Spectrometry Analysis
48 for Large-Scale Nontargeted Metabolomic Studies of Human Serum. Analytical Chemistry, 2009, 81,
3.2
1.8

173 7038-7046.

$$
\begin{aligned}
& 49 \text { UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature, 2015, } 522 \text {, } \\
& 502-506 .
\end{aligned}
$$

50 Systems biology guided by XCMS Online metabolomics. Nature Methods, 2017, 14, 461-462.
9.0

168

> Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst, The, $2013,138,3871$.

Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst,

An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals.
Communications Biology, 2018, 1, 66.

55	Rapid Quantitative Assessment of the Adulteration of Virgin Olive Oils with Hazelnut Oils Using Raman Spectroscopy and Chemometrics. Journal of Agricultural and Food Chemistry, 2003, 51, 6145-6150.	2.4	153
56	A metabolome pipeline: from concept to data to knowledge. Metabolomics, 2005, 1, 39-51.	1.4	152
57	Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics, 2005, 21, 860-868.	1.8	149
58	¹H NMR, GCâ’EI-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon. Analytical Chemistry, 2009, 81, 2884-2894.	3.2	147
59	Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today, 2014, 19, 171-182.	3.2	140
60	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	1.4	140
61	Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy. Chemical Society Reviews, 2008, 37, 883.	18.7	136

62 Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 2009, 5, 150-161.
Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chemical
Science, 2014,5,1030-1040.
64 Effective Quenching Processes for Physiologically Valid Metabolite Profiling of Suspension Cultured $\quad 3.2$

65	Taking your breath away: metabolomics breathes life in to personalized medicine. Trends in Biotechnology, 2014, 32, 538-548.	4.9	132
66	Characterization of Microorganisms Using UV Resonance Raman Spectroscopy and Chemometrics. Analytical Chemistry, 2004, 76, 585-591.	3.2	131
67	Portable, Quantitative Detection of <i>Bacillus<\|i> Bacterial Spores Using Surface-Enhanced Raman Scattering. Analytical Chemistry, 2013, 85, 3297-3302.	3.2	130

68 Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst, The, 2002, 127, 1457-1462.

Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass
73

$$
\begin{aligned}
& \text { Quantitative Analysis of the Banned Food Dye Sudan-1 Using Surface Enhanced Raman Scattering with } \\
& \text { Multivariate Chemometrics. Journal of Physical Chemistry C, 2010, 114, 7285-7290. }
\end{aligned}
$$

79	Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst, The, 2010, 135, 315.	1.7	119
80	Is Serum or Plasma More Appropriate for Intersubject Comparisons in Metabolomic Studies? An Assessment in Patients with Small-Cell Lung Cancer. Analytical Chemistry, 2011, 83, 6689-6697.	3.2	119
81	Electronic cigarette exposure triggers neutrophil inflammatory responses. Respiratory Research, 2016, 17, 56.	1.4	117
82	Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory nonâ€polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 2006, 46, 351-368.	2.8	115
83	A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control, 2013, 29, 461-470.	2.8	115
84	Surface-Enhanced Raman Scattering from Intracellular and Extracellular Bacterial Locations. Analytical Chemistry, 2008, 80, 6741-6746.	3.2	114
85	Untargeted Metabolic Profiling Identifies Altered Serum Metabolites of Type 2 Diabetes Mellitus in a Prospective, Nested Case Control Study. Clinical Chemistry, 2015, 61, 487-497.	1.5	113

Pyrolysis mass spectrometry and its applications in biotechnology. Current Opinion in Biotechnology,
3.3

112
1996, 7, 20-28.

Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with
3.2

112
the Standard Addition Method. Analytical Chemistry, 2017, 89, 2472-2477.

Extensive metabolic crossâ€talk in melon fruit revealed by spatial and developmental combinatorial
Variable Selection in Discriminant Partial Least-Squares Analysis. Analytical Chemistry, 1998, 70,
4126-4133.

Rapid identification of closely related muscle foods by vibrational spectroscopy and machine

96 Discovery of Volatile Biomarkers of Parkinsonâ $€^{T M}$ S Disease from Sebum. ACS Central Science, 2019, 5, 599-606.

Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics. Analyst, The, 2008, 133, 1424.

99 Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput
bacterial identification. Journal of the American Society for Mass Spectrometry, 2002, 13, 118-128.

Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 2016, 12, 14.
1.4

97
101 Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infectious Diseases, 2017,
101 3, 695-710.
$1.8 \quad 96$
Rapid and Quantitative Analysis of the Pyrolysis Mass Spectra of Complex Binary and Tertiary Mixtures
102 Using Multivariate Calibration and Artificial Neural Networks. Analytical Chemistry, 1994, 66,
3.2
1070-1085.

103 Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection
0.7

94
bacteria. FEMS Microbiology Letters, 2004, 232, 127-132.

Discrimination of Aerobic Endospore-forming Bacteria via Electrospray-Ionization Mass Spectrometry
104 of Whole Cell Suspensions. Analytical Chemistry, 2001, 73, 4134-4144.
3.2

93

A comparative investigation of modern feature selection and classification approaches for the
analysis of mass spectrometry data. Analytica Chimica Acta, 2014, 829, 1-8.
2.6

93

Rapid identification using pyrolysis mass spectrometry and artificial neural networks of <i>Propionibacterium acnes</i> isolated from dogs. Journal of Applied Bacteriology, 1994, 76, 124-134.
1.1

91

Metabolomics of sebum reveals lipid dysregulation in Parkinsonâ $€^{\mathrm{TM}}$ s disease. Nature Communications, 2021, 12, 1592.
5.8

91

109 Dual metabolomics：A novel approach to understanding plantâ $\mathrm{E}^{\text {＂}}$ pathogen interactions．Phytochemistry，
2010，71，590－597．

Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy．Analyst，The， 2005，130， 1019.

Monitoring the Mode of Action of Antibiotics Using Raman Spectroscopy：Â Investigating Subinhibitory
111 Effects of Amikacin onPseudomonasaeruginosa．Analytical Chemistry，2005，77，2901－2906．
3.2

112 Neural networks and olive oil．Nature，1992，359，594－594．
13.7

83
Diffuse reflectance absorbance spectroscopy taking in chemometrics（DRASTIC）．A hyperspectral
113 FT－IR－based approach to rapid screening for metabolite overproduction．Analytica Chimica Acta，1997，

2.6
348，273－282．

114 Explanatory analysis of spectroscopic data using machine learning of simple，interpretable rules． Vibrational Spectroscopy，2003，32，33－45．

115 Accumulation of ionic liquids in Escherichia coli cells．Green Chemistry，2008，10， 836.
4.6

82

116 Noninvasive，On－Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using
Dispersive Raman Spectroscopy and Chemometrics．Applied Spectroscopy，1999，53，1419－1428．
Monitoring of complex industrial bioprocesses for metabolite concentrations using modern
117 spectroscopies and machine learning：Application to gibberellic acid production．Biotechnology and
1.7

Bioengineering，2002，78，527－538．
Acclimation of metabolism to light in $\langle\mathrm{scp}\rangle\langle\mathrm{i}\rangle \mathrm{A}\langle\mathrm{i}\rangle\langle\mid \mathrm{scp}\rangle\langle\mathrm{i}\rangle$ rabidopsis thaliana＜／i＞：the glucose
118 6â€phosphate／phosphate translocator＜scp＞GPT＜／scp＞2 directs metabolic acclimation．Plant，Cell and
Environment，2015，38，1404－1417．
119 Root functional traits explain root exudation rate and composition across a range of grassland
species．Journal of Ecology，2022，110，21－33．

Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using
volatile organic compounds．Wound Repair and Regeneration，2010，18，391－400．

Plant Metabolomics and Its Potential for Systems Biology Research．Methods in Enzymology，2011，500，
299－336．

Combining Raman and FT－IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of
〈i＞E．coli＜｜i＞Cells at Community and Single Cell Levels．Analytical Chemistry，2015，87，4578－4586．

Metabolomic approaches reveal that cell wall modifications play a major role in ethyleneâ€mediated
resistance against 〈i＞Botrytis cinerea＜／i〉．Plant Journal，2011，67，852－868．
2.8

Classification of pyrolysis mass spectra by fuzzy multivariate rule induction－comparison with
124 regression，K－nearest neighbour，neural and decision－tree methods．Analytica Chimica Acta，1997，348，
2.6

389－407．

125 PYCHEM：a multivariate analysis package for python．Bioinformatics，2006，22，2565－2566．

Metabolic responses of eukaryotic microalgae to environmental stress limit the ability of FT-IR
spectroscopy for species identification. Algal Research, 2015, 11, 148-155.
Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies:
128 contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters, 2004, 146, 197-205.
$0.4 \quad 73$

MALDI-MS and multivariate analysis for the detection and quantification of different milk species.
Analytical and Bioanalytical Chemistry, 2011, 399, 3491-3502.

Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the
$130 \quad$ Reverse and Multiple Stable Isotope Probing to Study Bacterial

131 Investigating plantâ€"plant interference by metabolic fingerprinting. Phytochemistry, 2003, 63, 705-710.

Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra. Journal of Medical Microbiology, 1994, 40, 170-173.
0.7

70

133	Metabolic dysregulation in vitamin $\hat{A} E$ and carnitine shuttle energy mechanisms associate with human frailty. Nature Communications, 2019, 10, 5027.
134	Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics, 2017, 13, 12.
135	Screening ionic liquids for use in biotransformations with whole microbial cells. Green Chemistry, 2011, 13, 1843.
136	Correction of Mass Spectral Drift Using Artificial Neural Networks. Analytical Chemistry, 1996, 68, 271-280.

Making sense of the metabolome using evolutionary computation: seeing the wood with the trees.
137 Journal of Experimental Botany, 2004, 56, 245-254.

138 Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 2014, 99, 61-72.
1.4

66
Optimization of Parameters for the Quantitative Surface-Enhanced Raman Scattering Detection of
Mephedrone Using a Fractional Factorial Design and a Portable Raman Spectrometer. Analytical
Chemistry, 2013, 85, 923-931.

Chemistry, 2013, 85, 923-931.
A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic
3.0

64 reconstructions. BMC Systems Biology, 2013, 7, 107.

Matrix-suppressed laser desorption/ionisation mass spectrometry and its suitability for metabolome
analyses. Rapid Communications in Mass Spectrometry, 2006, 20, 1192-1198.
Raman spectroscopy: lighting up the future of microbial identification. Future Microbiology, 2011, 6,
991-997.Through-container, extremely low concentration detection of multiple chemical markers ofcounterfeit alcohol using a handheld SORS device. Scientific Reports, 2017, 7, 12082.
153 Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both genotypeâ€"phenotype links. Microbiology (United Kingdom), 2006, 152, 2757-2765.
$\begin{array}{ll}155 & \text { A flavour of omi } \\ 2016,10,7-15 .\end{array}$
58
156 Metabolomics-assisted synthetic biology. Current Opinion in Biotechnology, 2012, 23, 22-28. 3.3 561.755Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for thediscrimination of bacteria. Analyst, The, 2004, 129, 1118.

Rapid, Accurate, and Quantitative Detection of Propranolol in Multiple Human Biofluids via
Surface-Enhanced Raman Scattering. Analytical Chemistry, 2016, 88, 10884-10892.
Rapid screening for metabolite overproduction in fermentor broths, using pyrolysis mass
164 spectrometry with multivariate calibration and artificial neural networks. Biotechnology and
Bioengineering, 1994, 44, 1205-1216.

165 | Quantitative Analysis of Multivariate Data Using Artificial Neural Networks: A Tutorial Review and |
| :--- |
| Applications to the Deconvolution of Pyrolysis Mass Spectra. Zentralblatt Fur Bakteriologie: |
| International Journal of Medical Microbiology, 1996, 284, 516-539. |

166 On mass spectrometer instrument standardization and interlaboratory calibration transfer using neural networks. Analytica Chimica Acta, 1997, 348, 511-532.
2.6

50

167	Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabo footprinting. Reproductive BioMedicine Online, 2007, 15, 296-302.
168	Relatedness of medically important strains of <i>Saccharomyces cerevisiae</i> as revealed by phylogenetics and metabolomics. Yeast, 2008, 25, 501-512.
169	VOC-based metabolic profiling for food spoilage detection with the application to detecting Salmonella typhimurium-contaminated pork. Analytical and Bioanalytical Chemistry, 2010, 397, 2439-2449.
170	Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics. Biotechnology and Bioengineering, 2010, 106, 432-442.
171	Monitoring the Glycosylation Status of Proteins Using Raman Spectroscopy. Analytical Chemistry, 2011, 83, 6074-6081.
172	Enhancing Disease Diagnosis: Biomedical Applications of Surface-Enhanced Raman Scattering. Appli Sciences (Switzerland), 2019, 9, 1163.
173	Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Analytical Chemistry, 2020, 92, 4053-4064.

Increased intracellular proteolysis reduces disease severity in an ER stressâ€"associated dwarfism.
174 Journal of Clinical Investigation, 2017, 127, 3861-3865.
3.9

50

Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry
175 with supervised learning: application to the screening of Penicillium chrysogenum fermentations for
2.6

49
the overproduction of penicillins. Analytica Chimica Acta, 1995, 313, 25-43.
Identification and Discrimination of Oral Asaccharolytic Eubacterium spp. by Pyrolysis Mass
Spectrometry and Artificial Neural Networks. Current Microbiology, 1996, 32, 77-84.
1.0

49
Structural, spectroscopic and redox properties of uranyl complexes with a maleonitrile containing

$$
\text { ligand. Dalton Transactions, } 2011,40,5939 .
$$

1.6

49

The Importance of Protonation in the Investigation of Protein Phosphorylation Using Raman
3.2

49
Spectroscopy and Raman Optical Activity. Analytical Chemistry, 2011, 83, 7978-7983.

Comparing root exudate collection techniques: An improved hybrid method. Soil Biology and
Biochemistry, 2021, 161, 108391.
4.2

49

Microbiology Letters, 1990, 71, 133-137.
181 Contribution of pyrolysis-mass spectrometry (Py-MS) to authenticity testing of honey. Journal of 2.6 48 Analytical and Applied Pyrolysis, 2001, 60, 79-87.
The rapid identification of Acinetobacter species using Fourier transform infrared spectroscopy.
1.4
48

Journal of Applied Microbiology, 2004, 96, 328-339.
182 Journal of Applied Microbiology, 2004, 96, 328-339.
Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass
183 spectrometry with 9 -aminoacridine as the matrix. Rapid Communications in Mass Spectrometry, 2007,
0.7
48 21, 2072-2078.
184 FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in <i>Arabidopsis
2.3 thaliana</i>. Plant Physiology, 2016, 172, 118-127.
185 Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought. PLoS ONE, 2016,
$11, e 0154423$.
1.1
Explanatory Analysis of the Metabolome Using Genetic Programming of Simple, Interpretable Rules. 186 Explanatory Analysis of the Metabolome Using Genetic Programming \quad Genetic Programming and Evolvable Machines, 2000, 1, 243-258.
1.5
46
48
187 Rapid through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. Analyst, The, 2019, 144, 324-330.
1.7
46
188 Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92, 15745-15756.
Differentiation of Micromonospora Isolates from a Coastal Sediment in Wales on the Basis of Fourier189 Transform Infrared Spectroscopy, 16S rRNA Sequence Analysis, and the Amplified Fragment Length1.4Polymorphism Technique. Applied and Environmental Microbiology, 2004, 70, 6619-6627.
190 Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Ramanspectroscopy and chemometrics. Food Chemistry, 2019, 272, 157-164.

191	Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters, 1996, 140, 233-239.	0.7	45
192	Quantitative analysis of the pyrolysisâ $€$ "mass spectra of complex mixtures using artificial neural networks: Application to amino acids in glycogen. Journal of Analytical and Applied Pyrolysis, 1993, 26, 93-114.	2.6	44
193	Fourier transform infrared spectroscopy and chemometrics as a tool for the rapid detection of other vegetable fats mixed in cocoa butter. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 993-1000.	0.8	44

The deconvolution of pyrolysis mass spectra using genetic programming: application to the
identification of someEubacteriumspecies. FEMS Microbiology Letters, 1998, 160, 237-246.
Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass
200 spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to
1.9

ÃŽÂ ± 2-interferon production. Journal of Biotechnology, 1999, 72, 157-168.
201 Impact of Silver(I) on the Metabolism of Shewanella oneidensis. Journal of Bacteriology, 2010, 192, 1143-1150.

Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness.
Biotechnology Journal, 2015, 10, 1434-1445.
Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and
203 paraxanthine using surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2015,
1.9

407, 8253-8261.
204 Achieving optimal SERS through enhanced experimental design. Journal of Raman Spectroscopy, 2016,
47, 59-66.
Commentary on â€œGoodacre R, Timmins Ã\%M, Rooney PJ, Rowland JJ, Kell DB: Rapid identification of
205 Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform
205 infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 1996; 140:233-239ấ; the most
0.7

42 cited naner in the lournal for that vear. FEMS Microbiology Letters, 2017. 364. fnx018.

206 Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. , 1998, 14, 885-893.

Discrimination between methicillin-resistant and methicillin- susceptible Staphylococcus aureus
207 using pyrolysis mass spectrometry and artificial neural networks. Journal of Antimicrobial
1.3 Chemotherapy, 1998, 41, 27-34.

Biomarkers of Dietary Energy Restriction in Women at Increased Risk of Breast Cancer. Cancer Prevention Research, 2009, 2, 720-731.

2092 p or not $2 p$: tuppence-based SERS for the detection of illicit materials. Analyst, The, 2013, 138, 118-122.
1.7

41

210 Imaging Isotopically Labeled Bacteria at the Single-Cell Level Using High-Resolution Optical Infrared Photothermal Spectroscopy. Analytical Chemistry, 2021, 93, 3082-3088.
3.2

41

Phenotypic Characterization of <i>Shewanella oneidensis < ii> MR-1 under Aerobic and Anaerobic
211 Growth Conditions by Using Fourier Transform Infrared Spectroscopy and High-Performance Liquid
1.4

Chromatography Analyses. Applied and Environmental Microbiology, 2010, 76, 6266-6276.
TARDIS-based microbial metabolomics: time and relative differences in systems. Trends in Microbiology, 2011, 19, 315-322.
3.5

40

Rapid, accurate, and comparative differentiation of clinically and industrially relevant
microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst, The, 2016, 141, 5127-5136.
1.7

40

SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection
214 of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chemical
2.2

Communications, 2016, 52, 9925-9928.

215 Evidence That Multiple Defects in Lipid Regulation Occur before Hyperglycemia during the Prodrome of Type-2 Diabetes. PLoS ONE, 2014, 9, e103217.
217 The rapid differentiation of Streptomyces isolates using Fourier transform infrared spectroscopy.1.2
219 Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational 1.7 spectroscopy and MALDI-mass spectrometry. Analyst, The, 2016, 141, 111-122.39
220 Metabolomics and metabolite profiling. Analytical and Bioanalytical Chemistry, 2013, 405, 5003-5004.1.938
Rapid and quantitative analysis of recombinant protein expression using pyrolysis mass spectrometry
221 and artificial neural networks: application to mammalian cytochrome b5 in Escherichia coli. Journal 1.9 37 of Biotechnology, 1994, 34, 185-193.
222 Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. Journal of0.737Microbiological Methods, 2006, 67, 273-280.
223 Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics. Analyst, The, 2009, 134, 557-563. $1.7 \quad 37$
224 Intermittent energy restriction induces changes in breast gene expression and systemic metabolism.Breast Cancer Research, 2016, 18, 57.
2.2 37
225 Circadian rhythm of exhaled biomarkers in health and asthma. European Respiratory Journal, 2019, 54, 1901068. 3.1 37Phenotypic and genotypic differences between certain strains ofClostridium acetobutylicum. FEMSMicrobiology Letters, 1995, 125, 199-204.
227 Dupuytren's: a systems biology disease. Arthritis Research and Therapy, 2011, 13, 238.1.6
36
228 Label-Free Surface Enhanced Raman Scattering Approach for High-Throughput Screening of Biocatalysts. Analytical Chemistry, 2016, 88, 5898-5903.
3.2 36
Two Glycerol-3-Phosphate Dehydrogenases from <i>Chlamydomonas</i> Have Distinct Roles in Lipid 2.3 36
Metabolism. Plant Physiology, 2017, 174, 2083-2097.
The Role of Raman Spectroscopy Within Quantitative Metabolomics. Annual Review of Analytical Chemistry, 2021, 14, 323-345. 2.8 36 230Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared231 spectroscopy of bacterial cells. Journal of Industrial Microbiology and Biotechnology, 2001, 27,1.435
314-321.
Combining metabolic fingerprinting and footprinting to understand the phenotypic response of HPV16232 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. Analyst, The, 2010,1.735
135, 1235.

Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae)
Biodiversity. Metabolites, 2020, 10, 121 .

ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal, 2011, 435, 499-508.
1.7

34

Detection and quantification of the opioid tramadol in urine using surface enhanced Raman scattering. Analyst, The, 2015, 140, 5965-5970.
1.7

Fourier transform infrared spectroscopy of follicular fluids from large and small antral follicles. Human Reproduction, 2000, 15, 1667-1671.

Spatial metabolic fingerprinting using FT-IR spectroscopy: investigating abiotic stresses on Micrasterias hardyi. Analyst, The, 2008, 133, 1707.

A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic
240 data: application to the rapid identification of Bacillus spores and classification of Bacillus species. BMC Bioinformatics, 2011, 12, 33.

241 Liquid Chromatographyâ€"Mass Spectrometry Calibration Transfer and Metabolomics Data Fusion. Analytical Chemistry, 2012, 84, 9848-9857.
3.2

33

Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic
242 citrate metabolism during lipid mobilization in <i>Arabidopsis</i〉. Biochemical Journal, 2014, 463, 309-317.

243 Oxidized phosphatidylcholines suggest oxidative stress in patients with medium-chain acyl-CoA
243 dehydrogenase deficiency. Talanta, 2015, 139, 62-66.

Improved Descriptors for the Quantitative Structureâ€"Activity Relationship Modeling of Peptides and
244 Proteins. Journal of Chemical Information and Modeling, 2018, 58, 234-243.
2.5

33

245 Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia
245 analysed by TD-GC/MS. Journal of Breath Research, 2018, 12, 026002.
1.5

33

Optimization of XCMS parameters for LCâ€"MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results. Metabolomics, 2020, 16, 14.
1.4

33
1.7

33

Discrimination of bacteria using whole organism fingerprinting: the utility of modern
247 physicochemical techniques for bacterial typing. Analyst, The, 2021, 146, 770-788.
Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Frontiers in Chemistry, 2019, 7, 412.
1.8

32

Metabonomic evaluation of idiosyncrasy-like liver injury in rats cotreated with ranitidine and
$249 \begin{aligned} & \text { Metabonomic evaluation of idiosyncrasy-like liver injury in rats cotreated with } \\ & \text { lipopolysaccharide. Toxicology and Applied Pharmacology, 2006, 212, 35-44. }\end{aligned}$
1.3

31

Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in
1.7

31
human oral squamous cell carcinoma. Analyst, The, 2009, 134, 301-307.
1.7

33

Optimization of matrix assisted desorption/ionization time of flight mass spectrometry
251 (MALDI-TOF-MS) for the characterization of Bacillus and Brevibacillus species. Analytica Chimica Acta,
2.6

2014, 840, 49-57.

Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible
253 Monitoring the Succinate Dehydrogenase Activity Isolated from Mitochondria by Surface Enhanced1.5
255 Quantitative detection of codeine in human plasma using surface-enhanced Raman scattering via 1.7 29
adaptation of the isotopic labelling principle. Analyst, The, 2017, 142, 1099-1105.
256 Raman Spectroscopy to Monitor Post-Translational Modifications and Degradation in Monoclonal 3.2 Antibody Therapeutics. Analytical Chemistry, 2020, 92, 10381-10389. 29
257 Use of Pyrolysis Mass Spectrometry with Supervised Learning for the Assessment of the Adulteration of Milk of Different Species. Applied Spectroscopy, 1997, 51, 1144-1153. 1.2
Chemometric Analysis of Diffuse Reflectance-Absorbance Fourier Transform Infrared Spectra Using 258 Rule Induction Methods: Application to the Classification of Eubacterium Species. Applied 1.2 28 Spectroscopy, 1998, 52, 823-832.
259 Quantification of casein phosphorylation with
spectroscopy. Analyst, The, 2007, 132, 1053. 1.7 28
260 The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst,
261 Rapid, high-throughput, and quantitative determination of orange juice adulteration by
261 Fourier-transform infrared spectroscopy. Analytical Methods, 2016, 8, 5581-5586.$1.7 \quad 28$
260 The, 2013, 138, 6977.$1.3 \quad 28$
262 Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modernvibrational spectroscopy techniques. Scientific Reports, 2017, 7, 2649.1.628
263 Volatile organic compound signature from co-culture of lung epithelial cell line with
<i〉Pseudomonas aeruginosa<|i〉. Analyst, The, 2018, 143, 3148-3155.
1.7Determination of the geographical origin of Italian extra virgin olive oil using pyrolysis mass
264 spectrometry and artificial neural networks. Journal of Analytical and Applied Pyrolysis, 1997, 40-41,2.627
159-170.
265 A laser desorption ionisation mass spectrometry approach for high throughput metabolomics.1.427
Metabolomics, 2005, 1, 243-250.
266 Towards quantitatively reproducible substrates for SERS. Analyst, The, 2008, 133, 1449. 1.7 271.927
Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing1.9
cervical carcinoma cells. Analytical and Bioanalytical Chemistry, 2010, 398, 3051-3061.Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the268 phenotypic changes in complex bacterial communities capable of degrading phenol. Environmental1.827Microbiology, 2010, 12, 3253-3263.
269The optimisation of facile substrates for surface enhanced Raman scattering through galvanicreplacement of silver onto copper. Analyst, The, 2012, 137, 2791.1.727
271
Rapid discrimination of the causal agents of urinary tract infection using ToF-SIMS with chemometric cluster analysis. Applied Surface Science, 2006, 252, 6869-6874.
3.1

26

Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation. Rapid Communications in Mass Spectrometry, 2007, 21, 2157-2166.
0.7

26

277	TD/GCâ $E^{\text {" }} \mathrm{MS}$ analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum. Metabolomics, 2018, 14, 66.	1.4	26
278	Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks. Journal of Applied Microbiology, 1997, 83, 208-218.	1.4	25
279	Assessment of adaptive focused acoustics versus manual vortex/freeze-thaw for intracellular metabolite extraction from Streptomyces lividans producing recombinant proteins using GC-MS and multi-block principal component analysis. Analyst, The, 2010, 135, 934.	1.7	25
280	Integrating multiple analytical platforms and chemometrics for comprehensive metabolic profiling: application to meat spoilage detection. Analytical and Bioanalytical Chemistry, 2013, 405, 5063-5074.	1.9	25
281	A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond. MBio, 2018, 9 ,	1.8	25
282	The use of pyrolysisâ $€$ "mass spectrometry to detect the fimbrial adhesive antigen F41 from Escherichia coli HB101 (pSLM204). Journal of Analytical and Applied Pyrolysis, 1991, 22, 19-28.	2.6	24
283	High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy. Analyst, The, 2013, 138, 1363.	1.7	24
284	Monitoring Guanidinium-Induced Structural Changes in Ribonuclease Proteins Using Raman Spectroscopy and 2D Correlation Analysis. Analytical Chemistry, 2013, 85, 3570-3575.	3.2	24
285	Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry, 2015, 115, 99-111.	1.4	24

289

> Proof-of-principle study to detect metabolic changes in peritoneal dialysis effluent in patients who
> develop encapsulating peritoneal sclerosis. Nephrology Dialysis Transplantation, 2012, 27, 2502-2510.
0.4

23

290 Effects of high relative humidity and dry purging on VOCs obtained during breath sampling on
1.5
common sorbent tubes. Journal of Breath Research, 2020, 14, 046006.
23
Plant seed classification using pyrolysis mass spectrometry with unsupervised learning: The
$291 \quad$ application of auto-associative and Kohonen artificial neural networks. Chemometrics and Intelligent $\quad 1.8 \quad 22$
Laboratory Systems, 1996, 34, 69-83.
292 Using metabolic fingerprinting of plants for evaluating nitrogen deposition impacts on the landscape
level. Global Change Biology, 2006, 12, 1460-1465.

293 | Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic |
| :--- |
| Escherichia coli. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 983-988. |

294 SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.

$295 \quad$| Development of an adaptable headspace sampling method for metabolic profiling of the fungal |
| :--- |
| volatome. Analyst, The, 2018, 143, 4155-4162. |

296 Rapid Spectroscopic Liquid Biopsy for the Universal Detection of Brain Tumours. Cancers, 2021, 13, 3851.

$$
\begin{aligned}
& 297 \text { Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections } \\
& \text { at the single cell level. Chemical Science, 2022, 13, 8171-8179. }
\end{aligned}
$$

298 Rheological phenomena occurring during the shearing flow of mayonnaise. Journal of Rheology,1998, 42, 1537-1553.
Selective Detection of Proteins in Mixtures Using Electrospray Ionization Mass Spectrometry: \hat{A}
Influence of Instrumental Settings and Implications for Proteomics. Analytical Chemistry, 2004, 76,
300 Separating the Inseparable: The Metabolomic Analysis of Plantâ€"Pathogen Interactions. Methods in Molecular Biology, 2011, 860, 31-49.0.421$3.7 \quad 22$Electrochemical modulation of SERS at the liquid/liquid interface. Chemical Communications, 2014,
301 Electrochemical
2.2 211.621
Quantitative detection of isotopically enrichedE. colicells by SERS. Faraday Discussions, 2017, 205, 302 Quantitativ $331-343$.1.6
0.6 20
Rapid Analysis of High-Dimensional Bioprocesses Using Multivariate Spectroscopies and Advanced
303 Chemometrics. Advances in Biochemical Engineering/Biotechnology, 1999, 66, 83-113.

ToF-SIMS studies of Bacillus using multivariate analysis with possible identification and taxonomic applications. Applied Surface Science, 2006, 252, 6719-6722.and Bioanalytical Chemistry, 2012, 403, 2591-2599.
Exploring the mode of action of dithranol therapy for psoriasis: a metabolomic analysis using HaCaT
cells. Molecular BioSystems, 2015, 11, 2198-2209.

309 | Methodological considerations for large-scale breath analysis studies: lessons from the U-BIOPRED |
| :--- | :--- | :--- |
| severe asthma project. Journal of Breath Research, 2019, 13, 016001. |

$313 \quad \begin{aligned} & \text { Multiobjective evolutionary optimisation for surfa } \\ & \text { Bioanalytical Chemistry, 2010, 397, 1893-1901. }\end{aligned}$
Whole-organism Fingerprinting of the Genus Carnobacterium using Fourier Transform Infrared
Spectroscopy (FT-IR). Systematic and Applied Microbiology, 2004, 27, 186-191.
$320 \quad$ Phenotypic profiling of keloid scars using FT-IR microspectroscopy reveals a unique spectral
321 Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday 1.6 18

Metabolomics investigation of recombinant mTNFÎ士 production in Streptomyces lividans. Microbial Cell

[^1]1.4
325
326

Metabolic profiling of meat: assessment of pork hygiene and contamination with Salmonella
1.7 typhimurium. Analyst, The, 2011, 136, 508-514.
$0.7 \quad 18$ Microbiology Letters, 1990, 71, 133-138.

17
Dupuytren's disease metabolite analyses reveals alterations following initial short-term fibroblast
culturing. Molecular BioSystems, 2012, 8, 2274.

328 MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis.
$1.8 \quad 17$ Bioinformatics, 2015, 31, 975-977.

329	Classification of Bacillus and Brevibacillus species using rapid analysis of lipids by mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 7865-7878.	1.9	17
330	Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: a proof-of-concept study. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L751-L756.	1.3	17
331	Metabolic profiling: pathways in discovery. Drug Discovery Today, 2004, 9, 260-261.	3.2	16
332	Rapid characterization of <i>N</i>â€linked glycans from secreted and gelâ€purified monoclonal antibodies using MALDlâ€đoF mass spectrometry. Biotechnology and Bioengineering, 2010, 107, 902-908.	1.7	16
333	Monitoring the Effects of Chiral Pharmaceuticals on Aquatic Microorganisms by Metabolic Fingerprinting. Applied and Environmental Microbiology, 2010, 76, 2075-2085.	1.4	16
334	Multiple metabolomics of uropathogenic E. coli reveal different information content in terms of metabolic potential compared to virulence factors. Analyst, The, 2014, 139, 4193-4199.	1.7	16
335	A systematic analysis of TCA <i>Escherichia coli</i> mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source. Biotechnology Journal, 2015, 10, 1750-1761.	1.8	16
336	<scp>UV</scp> resonance Raman spectroscopy: a process analytical tool for host cell <scp>DNA</scp> and <scp>RNA</scp> dynamics in mammalian cell lines. Journal of Chemical Technology and Biotechnology, 2015, 90, 237-243.	1.6	16
337	Detecting food authenticity and integrity. Analytical Methods, 2016, 8, 3281-3283.	1.3	16

Metabolomic analysis of riboswitch containing E. coli recombinant expression system. Molecular

2.9

16
339 pH plays a role in the mode of action of trimethoprim on Escherichia coli. PLoS ONE, 2018, 13, e0200272.

Rapid UHPLC-MS metabolite profiling and phenotypic assays reveal genotypic impacts of nitrogen
$343 \quad \begin{aligned} & \text { Quantitative analysis of methyl green using surface-e } \\ & \text { and Bioanalytical Chemistry, 2009, 394, 1833-1838. }\end{aligned}$
Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron
Simultaneous quantification of the boar-taint compounds skatole and androstenone by
346 surface-enhanced Raman scattering (SERS) and multivariate data analysis. Analytical and Bioanalytical
1.9
349 The detection of caffeine in a variety of beverages using Curie-point pyrolysis mass spectrometry and
351 Investigating alginate production and carbon utilization in Pseudomonas fluorescens SBW25 usingmass spectrometry-based metabolic profiling. Metabolomics, 2013, 9, 403-417.
353 Detection of the adulteration of fresh coconut water <i>via</i> NMR spectroscopy andchemometrics. Analyst, The, 2019, 144, 1401-1408.
1.7 14354 Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell1.814354 Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell
141.813
Fluorescent Amplified Fragment Length Polymorphism Probabilistic Database for Identification of
Bacterial Isolates from Urinary Tract Infections. Journal of Clinical Microbiology, 2002, 40, 2795-280013
Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary1.413metabolites for both constitutive and inducible defenses. Metabolomics, 2019, 15, 151.Radiation Tolerance of Pseudanabaena catenata, a Cyanobacterium Relevant to the First Generation1.513Magnox Storage Pond. Frontiers in Microbiology, 2020, 11, 515.Use of earthworm casts to validate FT-IR spectroscopy as a â€ sentinelâ $€^{T M}$ technology for high-throughput359 monitoring of global changes in microbial ecologyThe 7th international symposium on earthworm
361 From phenotype to genotype: whole tissue profiling for plant breeding. Metabolomics, 2007, 3, 489-501. 1.4 12
Chemometrics models for overcoming high between subject variability: applications in clinical1.412metabolic profiling studies. Metabolomics, 2014, 10, 375-385.
Objective assessment of SERS thin films: comparison of silver on copper via galvanic displacement 1.3 12
363 with commercially available fabricated substrates. Analytical Methods, 2017, 9, 4783-4789. 1.3Mitochondrial aconitase is a key regulator of energy production for growth and protein expression
365 Polymer Pen Lithography-Fabricated DNA Arrays for Highly Sensitive and Selective Detection of 365 Unamplified Ganoderma Boninense DNA. Polymers, 2019, 11, 561.Biochemical signatures of acclimation by Chlamydomonas reinhardtii to different ionic stresses.Algal Research, 2019, 37, 83-91.$2.4 \quad 12$
Simultaneous Raman and Infrared Spectroscopy of Stable Isotope Labelled Escherichia coli. Sensors, $367 \quad \begin{aligned} & \text { Simultaneous Ra } \\ & \text { 2022, 22, } 3928 .\end{aligned}$ $2.1 \quad 12$1.411Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heathcommunities. Metabolomics, 2005, 1, 279-285.Fractional Factorial Design of MALDI-TOF-MS Sample Preparations for the Optimized Detection ofFractional Factorial Design of MALDI-TOF-MS Sample Preparations for the Opt
Phospholipids and Acylglycerols. Analytical Chemistry, 2016, 88, 6301-6308.3.211The androgen receptor gene CAG repeat â $€$ in relation to 4 -year changes in â $€$ "androgen-sensitive endpoints
371 Biofluids and other techniques: general discussion. Faraday Discussions, 2016, 187, 575-601. 1.6 11
1.6 11
Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330. 372
1.7 11
373 Quantification of protein glycation using vibrational spectroscopy. Analyst, The, 2020, 145, 3686-3696.1.911
in â€"community-dwelling older European men. European Journal of Endocrinology, 2016, 175, 583-593. 370QualPortable through Bottle SORS for the Authentication of Extra Virgin Olive Oil. Applied Sciences1.311
(Switzerland), 2021, 11, 8347.1.111
Pseudomonas putida DOT-T1E Cells to Challenge with Propranolol. PLoS ONE, 2016, 11, e0156509.1.1
handheld Raman spectroscopy and multivariate analysis. Analytical Methods, 2022, 14, 1663-1670. 1.311

Explanatory multivariate analysis of ToF-SIMS spectra for the discrimination of bacterial isolates.
Analyst, The, 2009, 134, 2352 .

380 An overflow ofâ€| what else but metabolism!. Metabolomics, 2010, 6, 1-2.
1.4
1.4
2.9 cervical carcinoma cells. Molecular BioSystems, 2014, 10, 398-411.

A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin
challenged Escherichia coli. Metabolomics, 2015, 11, 438-453.

Untargeted Molecular Analysis of Exhaled Breath as a Diagnostic Test for Ventilator-Associated
Lower Respiratory Tract Infections (BreathDx). Thorax, 2022, 77, 79-81.

385 No seven year itch for Metabolomics. Metabolomics, 2012, 8, 1-1.

FT-IR spectroscopic investigation of bacterial cell envelopes from Zymomonas mobilis which have different surface hydrophobicities. Vibrational Spectroscopy, 2013, 64, 51-57.

Compositional Equivalence of Grain from Multi-trait Drought-Tolerant Maize Hybrids to a
387 Conventional Comparator: Univariate and Multivariate Assessments. Journal of Agricultural and Food Chemistry, 2014, 62, 9597-9608.

Partial Least Squares with Structured Output for Modelling the Metabolomics Data Obtained from Complex Experimental Designs: A Study into the Y-Block Coding. Metabolites, 2016, 6, 38.

389 Rapid discrimination of Enterococcus faecium strains using phenotypic analytical techniques. Analytical Methods, 2016, 8, 7603-7613.

Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier
390 transform infrared spectroscopy and gas chromatography mass spectrometry. Metabolomics, 2016, 12,
1.4 112.

391 Recommendations on the Implementation of Genetic Algorithms for the Directed Evolution of Enzymes for Industrial Purposes. ChemBioChem, 2017, 18, 1087-1097.

Realâ€すime Monitoring of Enzymeâ€€atalysed Reactions using Deep UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 2017, 23, 6983-6987.

Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. Frontiers in Plant Science, 2019, 10, 594.

Metabolism in action: stable isotope probing using vibrational spectroscopy and SIMS reveals kinetic and metabolic flux of key substrates. Analyst, The, 2021, 146, 1734-1746.

Applying Metabolic Fingerprinting to Ecology: The Use of Fourier-Transform Infrared Spectroscopy
395 for the Rapid Screening of Plant Responses to N Deposition. Water, Air and Soil Pollution, 2004, 4,
0.8 251-258.

Ethnic differences in male reproductive hormones and relationships with adiposity and insulin resistance in older men. Clinical Endocrinology, 2017, 86, 660-668.

Assessing the impact of nitrogen supplementation in oats across multiple growth locations and years
398 with targeted phenotyping and high-resolution metabolite profiling approaches. Food Chemistry, 2021, 355, 129585.

399 Functional Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of
Hydroxyphenylglycine, a Nonribosomal Peptide Building Block. ACS Synthetic Biology, 2015, 4, 796-807.
1.9

SYNBIOCHEMâ€"a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 2016, 44, 675-677.
1.6 7

401 Omics Methods For the Detection of Foodborne Pathogens. , 2019, , 364-370.

402 Development of a sensor device with polymer-coated piezoelectric micro-cantilevers for detection of volatile organic compounds. Measurement Science and Technology, 2020, 31, 035103.
1.4

7

Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with
403 autism spectrum disorder (ASD) and their healthy siblings. Analytical and Bioanalytical Chemistry,
$1.9 \quad 7$ 2020, 412, 6859-6874.

404 Phenotypic Characterisation of Shewanella oneidensis MR-1 Exposed to X-Radiation. PLoS ONE, 2015, 10, e0131249.
1.1

7

405 Chemometric analyses with self organising feature maps. , 1999, , 335-347. 6

406 UV-B radiation induced changes in litter quality affects earthworm growth and cast characteristics as determined by metabolic fingerprinting. Pedobiologia, 2003, 47, 784-787.
0.5

6

Direct infusion electrospray ionization mass spectra of crude cell extracts for microbial
407 characterizations: influence of solvent conditions on the detection of proteins. Rapid
0.76

Communications in Mass Spectrometry, 2006, 20, 21-30.

408 Clinical Spectroscopy: general discussion. Faraday Discussions, 2016, 187, 429-460.
1.6

6

409 From Multistep Enzyme Monitoring to Whole-Cell Biotransformations: Development of Real-Time
3.26

Ultraviolet Resonance Raman Spectroscopy. Analytical Chemistry, 2017, 89, 12527-12532.

Rapid authentication of animal cell lines using pyrolysis mass spectrometry and auto-associative artificial neural networks. Cytotechnology, 1996, 21, 231-241.

5
\square
-

411 Quantitative detection and identification methods for microbial spoilage., 2006, , 3-27.

```
433 A Structural and Chemical Analyser (SCA) Identification of Bacteria Labelled by Metallic
Nanoparticles. Microscopy and Microanalysis, 2004, 10, 932-933.
```

$0.2 \quad 2$

Applying metabolic fingerprinting to ecology: The use of Fourier-transform infrared spectroscopy for

435 Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived
437 Comparison of liver and plasma metabolic profiles in piglets of different ages as animal models for paediatric population. Analyst, The, 2020, 145, 6859-6867. 1.7 2
438 Rapid Analysis of Microbiological Systems Using SERS. , 2006, , 397-408. 2
439 Intelligent Systems for the Characterization of Microorganisms from Hyperspectral Data. , 2000, 111-136. 2
440 Proteome and metabolome analyses for food authentication. , 2003, , 71-100.2
441 The dogs that did not bark. Trends in Biotechnology, 1994, 12, 434-435. 4.9 1
BAS/BSCR3 Partial reconstruction of myocardial metabolic pathways following analysis of peripheralserum using metabolomics in early cardiac ischaemia. Heart, 2010, 96, e13-el3.
1.2 1
443 The devil is in the detail. Metabolomics, 2013, 9, 1-2. 1.4 1
444 Metabolomics Society 2014 Metabolomics Publication Awards. Metabolomics, 2014, 10, 771-771.1.41
 1.4 1
446 Dealing with complexity: general discussion. Faraday Discussions, 2019, 218, 138-156.1.61
447 Future challenges and new approaches: general discussion. Faraday Discussions, 2019, 218, 505-523. 1.6 1case of lipid droplets in yeast cells. Clinical Spectroscopy, 2021, 3, 100014.
$451 \quad \begin{aligned} & \text { P-066. Fourier transform infra-red (FT-IR) spectroscopy of follicular fluids from antral follicles. } \\ & \text { Human Reproduction, 1999, 14, 173-174. }\end{aligned}$
<title> Intelligent systems for the characterization and quantification of microbial systems from advanced analytical techniques</title>. , 1999, 3853, 174.

453 Artificial neural networks as a tool for whole organism fingerprinting in bacterial taxonomy. , 2001, ,
$143-172$.
453 Artificial neural networks as a tool for whole organism fingerprinting in bacterial taxonomy. , 2001, ,
$143-172$.

454 Fingerprint Spectrometry Methods inBacillus Systematics. , 0, , 254-270.
0.4

0

0

0

Food quality and microbial succession in ageing earthworm casts: standard microbial indices and
metabolic fingerprinting. Pedobiologia, 2003, 47, 888-894.

Enhancing Raman Spectroscopy for the Rapid Characterisation of Microorganisms. Microscopy and
Microanalysis, 2004, 10, 1310-1311.

457 NEW IN 2005!. Metabolomics, 2005, 1, 287-287.
1.4

0

458 Understanding the behaviour of pathogenic cells: proteome and metabolome analyses. , 2005, , 3-52.
0

High-Throughput Microbial Characterizations Using Electrospray lonization Mass Spectrometry and Its Role in Functional Genomics. , 2006, , 229-256.

Discrimination and Identification of Microorganisms by Pyrolysis Mass Spectrometry: From Burning
Ambitions to Cooling Embers-A Historical Perspective., 2006, , 319-343.
0

Regression analysis for supply chain logged data: A simulated case study on shelf life prediction. , 2008, , .

PTU-033â€...Serum metabolite profiles differentiate Crohn's disease from ulcerative colitis and from healthy controls. Gut, 2010, 59, A61.2-A61.
6.1

0
.

463 A Robot Scientist Approach Towards Optimization Of SERS. , 2010, , .
0

464 Metabolomics society 2015 Metabolomics publication awards. Metabolomics, 2015, 11, 1035-1035.
1.4

0

PWE-199ÂMetabolomic profiling in acute pancreatitis; in search of new biomarkers. Gut, 2015, 64,
6.1

0
A299.2-A300.

PWE-200ÂMetabolomic profiling in pancreatic cancer; in search of new biomarkers. Gut, 2015, 64, A300.1-A300.
6.1

0
473 Metabolomics would like to thank all our referees for their support in 2018. Metabolomics, 2018, 14,
157.

Metabolic Fingerprint Analysis of Cytochrome b5-producing E. coli N4830-1 Using FT-IR Spectroscopy.
Frontiers in Microbiology, 0, 13, .
1.5

0

[^0]: 35
 Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics,
 2015, 11, 9-26.

[^1]: Evaluation of metabolomics profiles of grain from maize hybrids derived from near-isogenic GM
 323 positive and negative segregant inbreds demonstrates that observed differences cannot be attributed

