
Luca Valgimigli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8248334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant Activity of Essential Oils. Journal of Agricultural and Food Chemistry, 2013, 61, 10835-10847.	5.2	563
2	Advantages and limitations of common testing methods for antioxidants. Free Radical Research, 2015, 49, 633-649.	3.3	333
3	Multi-Target-Directed Drug Design Strategy: From a Dual Binding Site Acetylcholinesterase Inhibitor to a Trifunctional Compound against Alzheimer's Disease. Journal of Medicinal Chemistry, 2007, 50, 6446-6449.	6.4	244
4	Kinetic Solvent Effects on Hydroxylic Hydrogen Atom Abstractions Are Independent of the Nature of the Abstracting Radical. Two Extreme Tests Using Vitamin E and Phenol. Journal of the American Chemical Society, 1995, 117, 9966-9971.	13.7	219
5	Critical Re-evaluation of the Oâ^'H Bond Dissociation Enthalpy in Phenol. Journal of Physical Chemistry A, 2005, 109, 2647-2655.	2.5	202
6	Direct Antioxidant Activity of Purified Glucoerucin, the Dietary Secondary Metabolite Contained in Rocket (Eruca sativaMill.) Seeds and Sprouts. Journal of Agricultural and Food Chemistry, 2005, 53, 2475-2482.	5.2	193
7	Bond Dissociation Energies of the Nâ`'H Bond and Rate Constants for the Reaction with Alkyl, Alkoxyl, and Peroxyl Radicals of Phenothiazines and Related Compounds. Journal of the American Chemical Society, 1999, 121, 11546-11553.	13.7	166
8	Antioxidant activity of nanomaterials. Journal of Materials Chemistry B, 2018, 6, 2036-2051.	5.8	162
9	5-Pyrimidinols:Â Novel Chain-Breaking Antioxidants More Effective than Phenols. Journal of the American Chemical Society, 2001, 123, 4625-4626.	13.7	146
10	Cytotoxic and Antioxidant Activity of 4-Methylthio-3-butenyl Isothiocyanate from Raphanus sativus L. (Kaiware Daikon) Sprouts. Journal of Agricultural and Food Chemistry, 2008, 56, 875-883.	5.2	129
11	6-Amino-3-Pyridinols: Towards Diffusion-Controlled Chain-Breaking Antioxidants. Angewandte Chemie - International Edition, 2003, 42, 4370-4373.	13.8	125
12	Modulation of the antioxidant activity of phenols by non-covalent interactions. Organic and Biomolecular Chemistry, 2012, 10, 4147.	2.8	124
13	The Unusual Reaction of Semiquinone Radicals with Molecular Oxygen. Journal of Organic Chemistry, 2008, 73, 1830-1841.	3.2	117
14	Substituent Effects on the Bond Dissociation Enthalpies of Aromatic Amines. Journal of the American Chemical Society, 2002, 124, 11085-11092.	13.7	116
15	Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. Journal of Agricultural and Food Chemistry, 2018, 66, 3324-3329.	5.2	112
16	Solvent Effects on the Antioxidant Activity of Vitamin E1. Journal of Organic Chemistry, 1999, 64, 3381-3383.	3.2	108
17	Measurement of oxidative stress by EPR radical-probe technique. Free Radical Biology and Medicine, 2001, 31, 708-716.	2.9	98
18	Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chemistry, 2017, 232, 656-663.	8.2	98

Luca Valgimigli

#	Article	IF	CITATIONS
19	Oxidative Stress EPR Measurement in Human Liver by Radical-probe Technique. Correlation with Etiology, Histology and Cell Proliferation. Free Radical Research, 2002, 36, 939-948.	3.3	97
20	The Effect of Ring Nitrogen Atoms on the Homolytic Reactivity of Phenolic Compounds: Understanding the Radical-Scavenging Ability of 5-Pyrimidinols. Chemistry - A European Journal, 2003, 9, 4997-5010.	3.3	94
21	Antioxidant Activities of Vitamin E Analogues in Water and a Kamletâ^'Taft β-Value for Water1. Journal of the American Chemical Society, 1996, 118, 3545-3549.	13.7	93
22	Induction of cytochrome P450 enzymes and over-generation of oxygen radicals in beta-carotene supplemented rats. Carcinogenesis, 2001, 22, 1483-1495.	2.8	91
23	Antioxidant and proâ€oxidant capacities of ITCs. Environmental and Molecular Mutagenesis, 2009, 50, 222-237.	2.2	90
24	Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. Journal of Organic Chemistry, 2015, 80, 10651-10659.	3.2	89
25	Regenerable Chain-Breaking 2,3-Dihydrobenzo[b]selenophene-5-ol Antioxidants. Journal of Organic Chemistry, 2007, 72, 2583-2595.	3.2	88
26	Reactivity of Substituted Phenols Toward Alkyl Radicals. Journal of the American Chemical Society, 1999, 121, 507-514.	13.7	83
27	Synthesis and Reactivity of Some 6-Substituted-2,4-dimethyl-3-pyridinols, a Novel Class of Chain-Breaking Antioxidants. Journal of Organic Chemistry, 2004, 69, 9215-9223.	3.2	83
28	Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: Comparison with various aerial and root plant extracts. Food Chemistry, 2010, 120, 217-224.	8.2	83
29	Catalytic Chain-Breaking Pyridinol Antioxidants. Journal of Organic Chemistry, 2010, 75, 716-725.	3.2	82
30	Synthesis and Antioxidant Profile of all-rac-α-Selenotocopherol. Journal of Organic Chemistry, 2006, 71, 1033-1038.	3.2	81
31	Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis, 2003, 25, 61-67.	2.8	80
32	Absolute rate constants for the reaction of peroxyl radicals with cardanol derivatives. Perkin Transactions II RSC, 2001, , 2142-2146.	1.1	73
33	A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry B, 2016, 4, 2229-2241.	5.8	69
34	Antioxidant Profile of Ethoxyquin and Some of Its S, Se, and Te Analogues. Journal of Organic Chemistry, 2007, 72, 6046-6055.	3.2	68
35	Unexpected Acid Catalysis in Reactions of Peroxyl Radicals with Phenols. Angewandte Chemie - International Edition, 2009, 48, 8348-8351.	13.8	67
36	Incorporation of Ring Nitrogens into Diphenylamine Antioxidants: Striking a Balance between Reactivity and Stability. Journal of the American Chemical Society, 2012, 134, 8306-8309.	13.7	67

#	Article	IF	CITATIONS
37	Synthesis and Antioxidant Activity of [60]Fullerene–BHT Conjugates. Chemistry - A European Journal, 2006, 12, 4646-4653.	3.3	66
38	Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces Phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 595, 125-136.	1.0	65
39	TEMPO reacts with oxygen-centered radicals under acidic conditions. Chemical Communications, 2010, 46, 5139.	4.1	65
40	Modeling the Co-Antioxidant Behavior of Monofunctional Phenols. Applications to Some Relevant Compounds. Journal of Organic Chemistry, 2003, 68, 9654-9658.	3.2	63
41	Multiâ€faceted Reactivity of Alkyltellurophenols Towards Peroxyl Radicals: Catalytic Antioxidant Versus Thiolâ€Depletion Effect. Chemistry - A European Journal, 2013, 19, 7510-7522.	3.3	62
42	Maximizing the Reactivity of Phenolic and Aminic Radical-Trapping Antioxidants: Just Add Nitrogen!. Accounts of Chemical Research, 2015, 48, 966-975.	15.6	61
43	Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides. Journal of the American Chemical Society, 2016, 138, 5290-5298.	13.7	61
44	A Quantitative Approach to the Recycling of $\hat{I}\pm$ -Tocopherol by Coantioxidants. Journal of Organic Chemistry, 2002, 67, 9295-9303.	3.2	60
45	The Reaction of Sulfenic Acids with Peroxyl Radicals: Insights into the Radicalâ€Trapping Antioxidant Activity of Plantâ€Derived Thiosulfinates. Chemistry - A European Journal, 2012, 18, 6370-6379.	3.3	59
46	Peroxyl Radical Reactions in Water Solution: A Gym for Protonâ€Coupled Electronâ€Transfer Theories. Chemistry - A European Journal, 2016, 22, 7924-7934.	3.3	59
47	Kaiware Daikon (Raphanus sativus L.) Extract: A Naturally Multipotent Chemopreventive Agent#. Journal of Agricultural and Food Chemistry, 2008, 56, 7823-7830.	5.2	58
48	Long-Lasting Antioxidant Protection: A Regenerable BHA Analogue. Journal of Organic Chemistry, 2010, 75, 7535-7541.	3.2	57
49	Hydrogen Atom Transfer from HOO [.] to <i>ortho</i> â€Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie - International Edition, 2021, 60, 15220-15224.	13.8	57
50	Solvent Effects on the Reactivity and Free Spin Distribution of 2,2-Diphenyl-1-picrylhydrazyl Radicals1. Journal of Organic Chemistry, 1996, 61, 7947-7950.	3.2	56
51	Measurement of oxidative stress in human liver by EPR spin-probe technique. Free Radical Research, 2000, 33, 167-178.	3.3	56
52	Organochalcogen Substituents in Phenolic Antioxidants. Organic Letters, 2010, 12, 2326-2329.	4.6	56
53	The Redox Chemistry of Sulfenic Acids. Journal of the American Chemical Society, 2010, 132, 16759-16761.	13.7	56
54	Kinetic and thermodynamic aspects of the chain-breaking antioxidant activity of ascorbic acid derivatives in non-aqueous media. Organic and Biomolecular Chemistry, 2011, 9, 3792.	2.8	55

#	Article	IF	CITATIONS
55	Does β-Carotene Really Protect Vitamin E from Oxidation?. Journal of the American Chemical Society, 1997, 119, 8095-8096.	13.7	54
56	Preparation of Highly Reactive Pyridine- and Pyrimidine-Containing Diarylamine Antioxidants. Journal of Organic Chemistry, 2012, 77, 6908-6916.	3.2	53
57	Thermochemical and Kinetic Studies of a Bisphenol Antioxidant. Journal of Organic Chemistry, 2001, 66, 5456-5462.	3.2	50
58	Insulin secretion defects ofÂhuman type 2Âdiabetic islets are corrected inÂvitro byÂaÂnew reactive oxygen species scavenger. Diabetes and Metabolism, 2007, 33, 340-345.	2.9	49
59	HSâ€SPMEâ€GCâ€MS analysis of body odor to test the efficacy of foot deodorant formulations. Skin Research and Technology, 2009, 15, 503-510.	1.6	49
60	Redox Chemistry of Selenenic Acids and the Insight It Brings on Transition State Geometry in the Reactions of Peroxyl Radicals. Journal of the American Chemical Society, 2014, 136, 1570-1578.	13.7	48
61	Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: Isolation, structure elucidation and antioxidant activity. Food Chemistry, 2015, 166, 397-406.	8.2	47
62	In vitro evaluation of the permeation through reconstructed human epidermis of essentials oils from cosmetic formulations. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 370-376.	2.8	46
63	The Antioxidant Activity of Quercetin in Water Solution. Biomimetics, 2017, 2, 9.	3.3	46
64	Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth. Fìtoterapìâ, 2011, 82, 647-653.	2.2	45
65	Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry, 2021, 345, 128468.	8.2	45
66	From the dual function lead AP2238 to AP2469, a multiâ€ŧargetâ€directed ligand for the treatment of Alzheimer's disease. Pharmacology Research and Perspectives, 2014, 2, e00023.	2.4	44
67	Do Peroxyl Radicals Obey the Principle That Kinetic Solvent Effects on H-Atom Abstraction Are Independent of the Nature of the Abstracting Radical?. Journal of Organic Chemistry, 1998, 63, 4497-4499.	3.2	43
68	Catalytic Chain-Breaking Pyridinol Antioxidants. Organic Letters, 2008, 10, 4895-4898.	4.6	43
69	Pyridine and pyrimidine analogs of acetaminophen as inhibitors of lipid peroxidation and cyclooxygenase and lipoxygenase catalysis. Organic and Biomolecular Chemistry, 2009, 7, 5103.	2.8	43
70	Preparation and Investigation of Vitaminâ€B ₆ â€Derived Aminopyridinol Antioxidants. Chemistry - A European Journal, 2010, 16, 14106-14114.	3.3	42
71	Addition Reactions of Tris(trimethylsilyl)germyl Radicals to Unsaturated Compounds. An EPR and Product Study. Journal of Organic Chemistry, 1997, 62, 8009-8014.	3.2	41
72	The Reactivity of Air-Stable Pyridine- and Pyrimidine-Containing Diarylamine Antioxidants. Journal of Organic Chemistry, 2012, 77, 6895-6907.	3.2	40

#	Article	IF	CITATIONS
73	5- <i>S</i> -Lipoylhydroxytyrosol, a Multidefense Antioxidant Featuring a Solvent-Tunable Peroxyl Radical-Scavenging 3-Thio-1,2-dihydroxybenzene Motif. Journal of Organic Chemistry, 2013, 78, 9857-9864.	3.2	34
74	Extremely Fast Hydrogen Atom Transfer between Nitroxides and HOO · Radicals and Implication for Catalytic Coantioxidant Systems. Journal of the American Chemical Society, 2018, 140, 10354-10362.	13.7	34
75	Identification and analysis of isothiocyanates and new acylated anthocyanins in the juice of Raphanus sativus cv. Sango sprouts. Food Chemistry, 2012, 133, 563-572.	8.2	33
76	3-Pyridinols and 5-pyrimidinols: Tailor-made for use in synergistic radical-trapping co-antioxidant systems. Beilstein Journal of Organic Chemistry, 2013, 9, 2781-2792.	2.2	32
77	Perturbation of cytochrome P450, generation of oxidative stress and induction of DNA damage in Cyprinus carpio exposed in situ to potable surface water. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 626, 143-154.	1.7	30
78	Base-Promoted Reaction of 5-Hydroxyuracil Derivatives with Peroxyl Radicals. Organic Letters, 2010, 12, 4130-4133.	4.6	29
79	Measuring Antioxidant Activity in Bioorganic Samples by the Differential Oxygen Uptake Apparatus: Recent Advances. Journal of Chemistry, 2017, 2017, 1-12.	1.9	29
80	The non-peptidyl low molecular weight radical scavenger IAC protects human pancreatic islets from lipotoxicity. Molecular and Cellular Endocrinology, 2009, 309, 63-66.	3.2	28
81	Tyrosine Analogues for Probing Proton-Coupled Electron Transfer Processes in Peptides and Proteins. Journal of the American Chemical Society, 2010, 132, 863-872.	13.7	27
82	Reactions of Substituted Boryl Radicals with Nitroalkanes. EPR, Kinetic, and Product Studies. Journal of Organic Chemistry, 1996, 61, 4309-4313.	3.2	26
83	Homolytic Reactivity of Ligated Boranes toward Alkyl, Alkoxyl, and Peroxyl Radicals. Journal of Organic Chemistry, 1996, 61, 1161-1164.	3.2	25
84	Unprecedented Inhibition of Hydrocarbon Autoxidation by Diarylamine Radical-Trapping Antioxidants. Journal of the American Chemical Society, 2015, 137, 2440-2443.	13.7	25
85	A Robust Fungal Allomelanin Mimic: An Antioxidant and Potent Ï€â€Electron Donor with Freeâ€Radical Properties that can be Tuned by Ionic Liquids. ChemPlusChem, 2019, 84, 1331-1337.	2.8	24
86	The EPR study of dialkyl nitroxides as probes to investigate the exchange of solutes between micellar and water phases. Research on Chemical Intermediates, 2002, 28, 131-141.	2.7	23
87	Anomeric discrimination and rapid analysis of underivatized lactose, maltose, and sucrose in vegetable matrices by Uâ€HPLC–ESIâ€MS/MS using porous graphitic carbon. Journal of Mass Spectrometry, 2010, 45, 1012-1018.	1.6	23
88	Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes. Antioxidants, 2019, 8, 30.	5.1	23
89	Non-peptidyl low molecular weight radical scavenger IAC attenuates DSS-induced colitis in rats. World Journal of Gastroenterology, 2010, 16, 3642.	3.3	23
90	Captan impairs CYP-catalyzed drug metabolism in the mouse. Chemico-Biological Interactions, 1999, 123, 149-170.	4.0	21

Luca Valgimigli

#	Article	IF	CITATIONS
91	Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements. Skin Research and Technology, 2003, 9, 245-253.	1.6	21
92	Lemon (<i>Citrus limon,</i> Burm.f.) essential oil enhances the transâ€epidermal release of lipid―(A, E) and water―(B ₆ , C) soluble vitamins from topical emulsions in reconstructed human epidermis. International Journal of Cosmetic Science, 2012, 34, 347-356.	2.6	21
93	Hydroxy-substituted trans -cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 378-389.	5.5	21
94	Taking EPR "Snapshots" of the Oxidative Stress Status in Human Blood. Free Radical Research, 2003, 37, 503-508.	3.3	18
95	Analysis of in vitro release through reconstructed human epidermis and synthetic membranes of multi-vitamins from cosmetic formulations. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 461-467.	2.8	18
96	1-Methyl-1,4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. Journal of Organic Chemistry, 2019, 84, 13655-13664.	3.2	17
97	Redox-Based Flagging of the Global Network of Oxidative Stress Greatly Promotes Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 936-943.	3.6	15
98	Nanoscale Disassembly and Free Radical Reorganization of Polydopamine in Ionic Liquids. Journal of Physical Chemistry B, 2016, 120, 11942-11950.	2.6	15
99	Calibration of Squalene, <i>p</i> -Cymene, and Sunflower Oil as Standard Oxidizable Substrates for Quantitative Antioxidant Testing. Journal of Agricultural and Food Chemistry, 2019, 67, 6902-6910.	5.2	15
100	Antioxidant vitamins for prevention of cardiovascular disease. Lancet, The, 2003, 362, 920.	13.7	14
101	Red-Hair-Inspired Chromogenic System Based on a Proton-Switched Dehydrogenative Free-Radical Coupling. Organic Letters, 2013, 15, 4944-4947.	4.6	14
102	Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules, 2022, 12, 90.	4.0	14
103	Synthesis and Calibration of Two Radical Timing Devices:Â 2-Methyl-2-(1-naphthyl)- and 2-Methyl-2-(2-naphthyl)- 1-bromopropane. Journal of Organic Chemistry, 1999, 64, 3726-3730.	3.2	13
104	Beneficial Effect of the Nonpeptidyl Low Molecular Weight Radical Scavenger IAC on Cultured Human Islet Function. Cell Transplantation, 2008, 17, 1271-1276.	2.5	13
105	Spectrophotometric Method for the Determination of Polyphenol Oxidase Activity by Coupling of 4- <i>tert</i> -Butyl- <i>o</i> -Benzoquinone and 4-Amino- <i>N,N</i> -Diethylaniline. Analytical Letters, 1999, 32, 2007-2017.	1.8	12
106	Determination oftrans-anethole inSalvia sclarea essential oil by liquid chromatography and GC-MS. Journal of Separation Science, 2002, 25, 703-709.	2.5	12
107	Rapid liquid chromatography–tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils. Analytica Chimica Acta, 2015, 869, 50-58.	5.4	12
108	Avoidance of bioflavonoid supplements during pregnancy: a pathway to infant leukemia?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 527, 99-101.	1.0	11

#	Article	IF	CITATIONS
109	Quantitative evaluation of oxidative stress status on peripheral blood in beta-thalassaemic patients by means of electron paramagnetic resonance spectroscopy. British Journal of Haematology, 2005, 131, 135-140.	2.5	11
110	Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules, 2021, 26, 5237.	3.8	11
111	Disentangling the Puzzling Regiochemistry of Thiol Addition to <i>o</i> -Quinones. Journal of Organic Chemistry, 2022, 87, 4580-4589.	3.2	11
112	Guaiazulene in health care products: Determination by GC–MS and HPLC-DAD and photostability test. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 710-715.	2.8	10
113	Protonâ€Coupled Electron Transfer from Hydrogenâ€Bonded Phenols to Benzophenone Triplets. Chemistry - A European Journal, 2017, 23, 5299-5306.	3.3	10
114	Formation of a Blue Adduct between 4- tert -Butyl-1,2-benzoquinone and 4-Amino- N , N -diethylaniline. Tetrahedron, 2000, 56, 659-662.	1.9	9
115	Photometric assay for polyphenol oxidase activity in olives, olive pastes, and virgin olive oils. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 1245-1248.	1.9	9
116	Ditocopheryl Sulfides and Disulfides: Synthesis and Antioxidant Profile. Chemistry - A European Journal, 2019, 25, 9108-9116.	3.3	9
117	Reactivity of (<i>E</i>)â€4â€Hydroxyâ€2â€nonenal with Fluorinated Phenylhydrazines: Towards the Efficient Derivatization of an Elusive Key Biomarker of Lipid Peroxidation. European Journal of Organic Chemistry, 2012, 2012, 3841-3851.	2.4	8
118	Nanoscale PDA disassembly in ionic liquids: structure–property relationships underpinning redox tuning. Physical Chemistry Chemical Physics, 2019, 21, 12380-12388.	2.8	7
119	Oxidative stress and aging: a non-invasive EPR investigation in human volunteers. Aging Clinical and Experimental Research, 2015, 27, 235-238.	2.9	6
120	The effect of aromatic amines and phenols in the thiyl-induced reactions of polyunsaturated fatty acids. Radiation Physics and Chemistry, 2016, 124, 104-110.	2.8	6
121	The Role of Onium Salts in the Proâ€Oxidant Effect of Gold Nanoparticles in Lipophilic Environments. Chemistry - A European Journal, 2018, 24, 9113-9119.	3.3	6
122	The role of sulfur and heavier chalcogens in the chemistry of antioxidants. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 638-642.	1.6	5
123	Proton-Sensitive Free-Radical Dimer Evolution Is a Critical Control Point for the Synthesis of Δ ^{2,2[′]} -Bibenzothiazines. Journal of Organic Chemistry, 2020, 85, 11440-11448.	3.2	5
124	SET and HAT/PCET acidâ€mediated oxidation processes in helical shaped fused bisâ€phenothiazines. ChemPhysChem, 2021, 22, 1446-1454.	2.1	5
125	Hydrogen Atom Transfer from HOO . to ortho â€Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie, 2021, 133, 15348-15352.	2.0	5
126	CHAPTER 26. Analysis of Maltose and Lactose by U-HPLC-ESI-MS/MS. Food and Nutritional Components in Focus, 2012, , 443-463.	0.1	4

#	Article	IF	CITATIONS
127	Real-time oxygen sensing as a powerful tool to investigate tyrosinase kinetics allows revising mechanism and activity of inhibition by glabridin. Food Chemistry, 2022, 393, 133423.	8.2	3
128	6-Amino-3-Pyridinols: Towards Diffusion-Controlled Chain-Breaking Antioxidants. Angewandte Chemie - International Edition, 2003, 42, 4847-4847.	13.8	2
129	Alditol thiacrowns via a ring-closing metathesis of carbohydrate-derived α,ï‰-dithioallylethers. Tetrahedron, 2015, 71, 5602-5609.	1.9	2
130	Antioxidant Supplementation in Health Promotion and Modulation of Aging. , 2013, , 1-20.		1
131	CHAPTER 11. Vitamin E Inspired Synthetic Antioxidants. Food Chemistry, Function and Analysis, 2019, , 151-164.	0.2	1
132	MEASUREMENT OF OXIDATIVE STRESS BY EPR RADICAL-PROBE TECHNIQUE. , 2001, , 274-282.		0