
Miles A Herkenham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress. Brain, Behavior, and Immunity, 2022, 101, 346-358.	2.0	4
2	B-cells are abnormal in psychosocial stress and regulate meningeal myeloid cell activation. Brain, Behavior, and Immunity, 2021, 97, 226-238.	2.0	13
3	Analysis of cerebrovascular dysfunction caused by chronic social defeat in mice. Brain, Behavior, and Immunity, 2020, 88, 735-747.	2.0	24
4	The Behavioral Sequelae of Social Defeat Require Microglia and Are Driven by Oxidative Stress in Mice. Journal of Neuroscience, 2019, 39, 5594-5605.	1.7	85
5	Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Scientific Reports, 2018, 8, 11240.	1.6	64
6	The contribution of microglia to "immunization against stress― Brain, Behavior, and Immunity, 2018, 73, 161-162.	2.0	1
7	Chronic social defeat reduces myelination in the mouse medial prefrontal cortex. Scientific Reports, 2017, 7, 46548.	1.6	94
8	Contributions of the adaptive immune system to mood regulation: Mechanisms and pathways of neuroimmune interactions. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 49-57.	2.5	30
9	Therapeutic effects of stress-programmed lymphocytes transferred to chronically stressed mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 70, 1-7.	2.5	21
10	Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages. Journal of Neuroinflammation, 2016, 13, 224.	3.1	117
11	Lymphocytes from Chronically Stressed Mice Confer Antidepressant-Like Effects to Naive Mice. Journal of Neuroscience, 2015, 35, 1530-1538.	1.7	113
12	Minimal NF-κB activity in neurons. Neuroscience, 2013, 250, 282-299.	1.1	98
13	Glucocorticoids Orchestrate Divergent Effects on Mood through Adult Neurogenesis. Journal of Neuroscience, 2013, 33, 2961-2972.	1.7	144
14	PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology, 2013, 38, 702-715.	1.3	106
15	Urine Scent Marking (USM): A Novel Test for Depressive-Like Behavior and a Predictor of Stress Resiliency in Mice. PLoS ONE, 2013, 8, e69822.	1.1	46
16	Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain, Behavior, and Immunity, 2012, 26, 623-634.	2.0	220
17	Cautionary notes on the use of NF- $\hat{I}^{e}B$ p65 and p50 antibodies for CNS studies. Journal of Neuroinflammation, 2011, 8, 141.	3.1	34
18	Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience, 2011, 31, 6159-6173.	1.7	194

#	Article	IF	CITATIONS
19	NF-κB activity affects learning in aversive tasks: Possible actions via modulation of the stress axis. Brain, Behavior, and Immunity, 2010, 24, 1008-1017.	2.0	31
20	Induction of IDO by Bacille Calmette-Gue l rin Is Responsible for Development of Murine Depressive-Like Behavior. Journal of Immunology, 2009, 182, 3202-3212.	0.4	279
21	Three Promoters Regulate Tissue- and Cell Type-specific Expression of Murine Interleukin-1 Receptor Type I. Journal of Biological Chemistry, 2009, 284, 8703-8713.	1.6	11
22	Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIFâ€2 deficient mice. FASEB Journal, 2007, 21, 231-238.	0.2	30
23	Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood, 2006, 107, 4000-4002.	0.6	86
24	Thermoregulatory responses of rats to conventional preparations of lipopolysaccharide are caused by lipopolysaccharide per se— not by lipoprotein contaminants. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R348-R352.	0.9	32
25	Folliculo-Stellate (FS) Cells of the Anterior Pituitary Mediate Interactions between the Endocrine and Immune Systems. Endocrinology, 2005, 146, 33-34.	1.4	21
26	Toll-Like Receptor 4 on Nonhematopoietic Cells Sustains CNS Inflammation during Endotoxemia, Independent of Systemic Cytokines. Journal of Neuroscience, 2005, 25, 1788-1796.	1.7	359
27	Involvement of the Choroid Plexus and the Cerebrospinal Fluid in Immune Molecule Signaling in the Central Nervous System. , 2005, , 437-457.		Ο
28	Activin mRNA induced during amygdala kindling shows a spatiotemporal progression that tracks the spread of seizures. Journal of Comparative Neurology, 2004, 476, 91-102.	0.9	30
29	NF-κB p50-deficient mice show reduced anxiety-like behaviors in tests of exploratory drive and anxiety. Behavioural Brain Research, 2004, 154, 577-584.	1.2	88
30	Hyperforin-Containing Extracts of St John's Wort Fail to Alter Gene Transcription in Brain Areas Involved in HPA Axis Control in a Long-Term Treatment Regimen in Rats. Neuropsychopharmacology, 2003, 28, 2160-2168.	2.8	12
31	Induced neuronal expression of class I major histocompatibility complex mRNA in acute and chronic inflammation models. Journal of Neuroimmunology, 2002, 131, 83-91.	1.1	48
32	Immunization with a cannabinoid receptor type 1 peptide results in experimental allergic meningocerebellitis in the Lewis rat: A model for cell-mediated autoimmune neuropathology. Journal of Neuroscience Research, 2002, 70, 150-160.	1.3	2
33	Localization of cannabinoid CB1 receptor mRNA in neuronal subpopulations of rat striatum: A double-label in situ hybridization study. Synapse, 2000, 37, 71-80.	0.6	194
34	Spatiotemporal induction patterns of cytokine and related immune signal molecule mRNAs in response to intrastriatal injection of lipopolysaccharide. Journal of Neuroimmunology, 2000, 106, 114-129.	1.1	27
35	Spatiotemporal induction patterns of cytokine and related immune signal molecule mRNAs in response to intrastriatal injection of lipopolysaccharide. Journal of Neuroimmunology, 2000, 109, 245-260.	1.1	37
36	Induction of lκBα mRNA Expression in the Brain by Glucocorticoids: A Negative Feedback Mechanism for Immune-to-Brain Signaling. Journal of Neuroscience, 2000, 20, 6473-6477.	1.7	51

#	Article	IF	CITATIONS
37	Fragile X (fmr1) mRNA expression is differentially regulated in two adult models of activity-dependent gene expression. Molecular Brain Research, 2000, 75, 337-341.	2.5	22
38	Localization of cannabinoid CB1 receptor mRNA in neuronal subpopulations of rat striatum: A doubleâ€label in situ hybridization study. Synapse, 2000, 37, 71-80.	0.6	3
39	Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. Journal of Neuroimmunology, 1999, 93, 72-80.	1.1	225
40	Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Research, 1999, 822, 17-25.	1.1	178
41	Chronic overexpression of proinflammatory cytokines and histopathology in the brains of rats infected withTrypanosoma brucei. , 1999, 414, 114-130.		75
42	Extrasynaptic receptors and parasynaptic communication in the brain. Brain Research Bulletin, 1999, 50, 351-352.	1.4	7
43	Region-specific up-regulation of opioid receptor binding in enkephalin knockout mice. Molecular Brain Research, 1999, 68, 193-197.	2.5	46
44	Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. Brain Research, 1998, 802, 189-197.	1.1	157
45	Temporal and spatial patterns ofc-fos mRNA induced by intravenous interleukin-1: A cascade of non-neuronal cellular activation at the blood-brain barrier. , 1998, 400, 175-196.		75
46	Regulation of cannabinoid and mu opioid receptors in rat lumbar spinal cord following neonatal capsaicin treatment. Neuroscience Letters, 1998, 252, 13-16.	1.0	103
47	Area postrema removal abolishes stimulatory effects of intravenous interleukin-1β on hypothalamic-pituitary-adrenal axis activity and c-fos mRNA in the hypothalamic paraventricular nucleus. Brain Research Bulletin, 1998, 46, 495-503.	1.4	72
48	Unilateral LTP triggers bilateral increases in hippocampal neurotrophin andtrk receptor mRNA expression in behaving rats: Evidence for interhemispheric communication. , 1996, 368, 371-382.		122
49	Effects of Long-Term Treatment with Antidepressant Drugs on Proopiomelanocortin and Neuropeptide Y mRNA Expression in the Hypothalamic Arcuate Nucleus of Rats. Journal of Neuroendocrinology, 1996, 8, 337-343.	1.2	43
50	Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats: Evidence for interhemispheric communication. Journal of Comparative Neurology, 1996, 368, 371-382.	0.9	2
51	Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: Neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. Journal of Comparative Neurology, 1995, 358, 518-530.	0.9	178
52	Selective vulnerability in Huntington's disease: Preferential loss of cannabinoid receptors in lateral globus pallidus. Annals of Neurology, 1994, 36, 577-584.	2.8	178
53	Hypothalamic lesions increase levels of neuropeptide Y mRNA in the arcuate nucleus of mice. Neuroscience Letters, 1994, 165, 13-17.	1.0	16
54	Molecular alterations in the neostriatum of human cocaine addicts. Synapse, 1993, 13, 357-369.	0.6	323

4

#	Article	IF	CITATIONS
55	Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Research, 1993, 616, 293-302.	1.1	173
56	Influence of a single injection of cocaine, amphetamine or GBR 12909 on mRNA expression of striatal neuropeptides. Molecular Brain Research, 1992, 16, 97-104.	2.5	154
57	Cannabinoid Receptor Localization in Brain: Relationship to Motor and Reward Systems. Annals of the New York Academy of Sciences, 1992, 654, 19-32.	1.8	129
58	The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Research, 1992, 572, 117-125.	1.1	238
59	Intrahippocampal Colchicine Alters Hypothalamic Corticotropin-Releasing Hormone and Hippocampal Steroid Receptor mRNA in Rat Brain. Neuroendocrinology, 1992, 55, 121-133.	1.2	20
60	Repeated Immobilization Stress Alters Tyrosine Hydroxylase, Corticotropin-Releasing Hormone and Corticosteroid Receptor Messenger Ribonucleic Acid Levels in Rat Brain. Journal of Neuroendocrinology, 1992, 4, 689-699.	1.2	114
61	Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Research, 1991, 544, 26-32.	1.1	123
62	Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Research, 1991, 547, 267-274.	1.1	499
63	Selective anorexigenic effects of corticotropin releasing hormone in the rhesus monkey. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1991, 15, 379-391.	2.5	13
64	Thalamoamygdaloid projections in the rat: A test of the amygdala's role in sensory processing. Journal of Comparative Neurology, 1991, 313, 295-325.	0.9	407
65	Optimization of cRNA probein situ hybridization methodology for localization of glucocorticoid receptor mRNA in rat brain: A detailed protocol. Cellular and Molecular Neurobiology, 1990, 10, 145-157.	1.7	190
66	Altered Expression of Hypothalamic Neuropeptide mRNAs in Food-Restricted and Food-Deprived Rats. Neuroendocrinology, 1990, 52, 441-447.	1.2	630
67	The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends in Neurosciences, 1990, 13, 420-423.	4.2	285
68	Chronic morphine increases μ-opiate receptor binding in rat brain: a quantitative autoradiographic study. Brain Research, 1989, 477, 382-386.	1.1	94
69	Physiological regulation of neurohypophyseal \hat{I}^{e} -opiate receptors. Brain Research, 1988, 443, 398-402.	1.1	19
70	Dehydration reduces κ-opiate receptor binding in the neurohypophysis of the rat. Brain Research, 1987, 425, 212-217.	1.1	23
71	Autoradiographic evidence for two classes of mu opioid binding sites in rat brain using [1251]FK33824. Peptides, 1987, 8, 1015-1021.	1.2	59
72	Distribution of opiate receptor subtypes and enkephalin and dynorphin immunoreactivity in the hippocampus of squirrel, guinea pig, rat, and hamster. Journal of Comparative Neurology, 1987, 255, 497-510.	0.9	169

#	Article	IF	CITATIONS
73	A comparative autoradiographic study of the distributions of substance P and eledoisin binding sites in rat brain. Brain Research, 1986, 385, 273-281.	1.1	96
74	Autoradiographic localization of μ- and Î-opiate receptors in the forebrain of the rat. Brain Research, 1986, 378, 49-60.	1.1	172
75	Opiate receptors in rat pituitary are confined to the neural lobe and are exclusively kappa. Brain Research, 1986, 382, 365-371.	1.1	132
76	Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Research, 1986, 365, 397-403.	1.1	379
77	Evidence that the delta-selective alkylating agent, FIT, alters the mu-noncompetitive opiate delta binding site. Neuropeptides, 1985, 6, 227-237.	0.9	10
78	Preparation of rat brain membranes highly enriched with opiate kappa binding sites using site-directed acylating agents: Optimization of assay conditions. Neuropeptides, 1985, 6, 503-516.	0.9	34
79	Tritiated 2-deoxy-D-glucose: A high-resolution marker for autoradiographic localization of brain metabolism. Journal of Comparative Neurology, 1984, 222, 128-139.	0.9	21
80	Autoradiographic localization of a novel peptide binding site in rat brain using the substance P analog, eledoisin. Neuropeptides, 1984, 4, 343-349.	0.9	38
81	Quantitative receptor autoradiography: tissue defatting eliminates differential self-absorption of tritium radiation in gray and white matter of brain. Brain Research, 1984, 321, 363-368.	1.1	126
82	Visualization of rat brain receptors for the neuropeptide, substance P. Brain Research, 1984, 309, 47-54.	1.1	104
83	Comparative development of striatal opiate receptors and dopamine revealed by autoradiography and histofluorescence. Brain Research, 1984, 305, 27-42.	1.1	128
84	AUTORADIOGRAPHIC DEMONSTRATION OF RECEPTOR DISTRIBUTIONS., 1984, , 127-152.		5
85	Opiate receptor localization in rat cerebral cortex. Journal of Comparative Neurology, 1983, 216, 339-358.	0.9	92
86	Altered metabolic activity in the cerebral cortex of rats exposed to ketamine. Journal of Comparative Neurology, 1983, 220, 396-404.	0.9	48
87	Evolution of striatal opiate receptors. Brain Research, 1982, 249, 184-188.	1.1	44
88	Visualization and solubilization of rat brain opiate receptors with a ??? ligand selectivity pattern. Cellular and Molecular Neurobiology, 1982, 2, 333-346.	1.7	56
89	Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Research, 1981, 212, 234-238.	1.1	120
90	Anesthetics and the habenulo-interpeduncular system: selective sparing of metabolic activity. Brain Research, 1981, 210, 461-466.	1.1	64

#	Article	IF	CITATIONS
91	Ontogeny of opiate receptors in rat forebrain: Visualization by in vitro autoradiography. Developmental Brain Research, 1981, 2, 487-504.	2.1	192
92	Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature, 1981, 291, 415-418.	13.7	513
93	From Receptors to Brain Circuitry. , 1981, , 511-522.		7
94	The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. Journal of Comparative Neurology, 1979, 183, 487-517.	0.9	459
95	Efferent connections of the habenular nuclei in the rat. Journal of Comparative Neurology, 1979, 187, 19-47.	0.9	759
96	The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat. Journal of Comparative Neurology, 1978, 177, 589-609.	0.9	436
97	Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. Journal of Comparative Neurology, 1977, 173, 123-145.	0.9	740