
Gunter Bloschl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247672/publications.pdf Version: 2024-02-01

CUNTER BLOSCHI

#	Article	IF	CITATIONS
1	Scale issues in hydrological modelling: A review. Hydrological Processes, 1995, 9, 251-290.	2.6	1,348
2	Socioâ€hydrology: A new science of people and water. Hydrological Processes, 2012, 26, 1270-1276.	2.6	822
3	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	2.6	821
4	Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research, 1999, 35, 797-810.	4.2	646
5	Changing climate both increases and decreases European river floods. Nature, 2019, 573, 108-111.	27.8	639
6	A compilation of data on European flash floods. Journal of Hydrology, 2009, 367, 70-78.	5.4	623
7	Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resources Research, 1997, 33, 2897-2908.	4.2	608
8	Changing climate shifts timing of European floods. Science, 2017, 357, 588-590.	12.6	584
9	"Panta Rhei—Everything Flows― Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	2.6	569
10	Regionalisation of catchment model parameters. Journal of Hydrology, 2004, 287, 95-123.	5.4	549
11	Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 2004, 286, 113-134.	5.4	532
12	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
13	The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorologische Zeitschrift, 2013, 22, 5-33.	1.0	471
14	Scaling of Soil Moisture: A Hydrologic Perspective. Annual Review of Earth and Planetary Sciences, 2002, 30, 149-180.	11.0	428
15	Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrology and Earth System Sciences, 2014, 18, 2735-2772.	4.9	423
16	Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 2013, 17, 3295-3303.	4.9	403
17	Flood risk assessment and associated uncertainty. Natural Hazards and Earth System Sciences, 2004, 4, 295-308.	3.6	402
18	On the spatial scaling of soil moisture. Journal of Hydrology, 1999, 217, 203-224.	5.4	395

#	Article	IF	CITATIONS
19	Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrology Research, 2007, 38, 1-20.	2.7	395
20	A process typology of regional floods. Water Resources Research, 2003, 39, .	4.2	347
21	Toward capturing hydrologically significant connectivity in spatial patterns. Water Resources Research, 2001, 37, 83-97.	4.2	338
22	Debates—Perspectives on socioâ€hydrology: Capturing feedbacks between physical and social processes. Water Resources Research, 2015, 51, 4770-4781.	4.2	337
23	Time stability of catchment model parameters: Implications for climate impact analyses. Water Resources Research, 2011, 47, .	4.2	334
24	At what scales do climate variability and land cover change impact on flooding and low flows?. Hydrological Processes, 2007, 21, 1241-1247.	2.6	313
25	A comparison of regionalisation methods for catchment model parameters. Hydrology and Earth System Sciences, 2005, 9, 157-171.	4.9	309
26	Downward approach to hydrological prediction. Hydrological Processes, 2003, 17, 2101-2111.	2.6	294
27	Flood fatalities in Africa: From diagnosis to mitigation. Geophysical Research Letters, 2010, 37, .	4.0	290
28	Scaling issues in snow hydrology. Hydrological Processes, 1999, 13, 2149-2175.	2.6	285
29	Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 2017, 53, 5209-5219.	4.2	269
30	Bacterial diversity along a 2600 km river continuum. Environmental Microbiology, 2015, 17, 4994-5007.	3.8	265
31	Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science and Policy, 2011, 14, 834-844.	4.9	256
32	Spatioâ€ŧemporal combination of MODIS images – potential for snow cover mapping. Water Resources Research, 2008, 44, .	4.2	254
33	Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. Journal of Hydrology, 1998, 205, 20-37.	5.4	240
34	Floods and climate: emerging perspectives for flood risk assessment and management. Natural Hazards and Earth System Sciences, 2014, 14, 1921-1942.	3.6	239
35	Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resources Research, 2019, 55, 6327-6355.	4.2	226
36	A Probabilistic Modelling System for Assessing Flood Risks. Natural Hazards, 2006, 38, 79-100.	3.4	225

#	Article	IF	CITATIONS
37	Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust. Journal of Hydrology, 2014, 518, 71-82.	5.4	223
38	Flood frequency regionalisation—spatial proximity vs. catchment attributes. Journal of Hydrology, 2005, 302, 283-306.	5.4	218
39	A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, 2009, 45, .	4.2	218
40	The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology, 2008, 358, 240-258.	5.4	213
41	Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 2006, 331, 591-604.	5.4	212
42	Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 2014, 18, 463-477.	4.9	208
43	Time scale interactions and the coevolution of humans and water. Water Resources Research, 2015, 51, 6988-7022.	4.2	205
44	Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves. Journal of Hydrology, 1998, 204, 150-167.	5.4	204
45	Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences, 2006, 10, 679-689.	4.9	199
46	Advances in the use of observed spatial patterns of catchment hydrological response. Advances in Water Resources, 2002, 25, 1313-1334.	3.8	198
47	Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 2008, 44, .	4.2	197
48	Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions. Water Resources Research, 2004, 40, .	4.2	187
49	Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies. Hydrology and Earth System Sciences, 2013, 17, 1783-1795.	4.9	186
50	The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrology and Earth System Sciences, 2013, 17, 5197-5212.	4.9	182
51	Seasonal characteristics of flood regimes across the Alpine–Carpathian range. Journal of Hydrology, 2010, 394, 78-89.	5.4	181
52	Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting. Journal of Hydrology, 2008, 357, 228-242.	5.4	176
53	Causes, impacts and patterns of disastrous river floods. Nature Reviews Earth & Environment, 2021, 2, 592-609.	29.7	175
54	Characteristic space scales and timescales in hydrology. Water Resources Research, 2003, 39, .	4.2	172

#	Article	IF	CITATIONS
55	Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences, 2006, 10, 277-287.	4.9	171
56	Climate change impacts—throwing the dice?. Hydrological Processes, 2010, 24, 374-381.	2.6	171
57	Distributed Snowmelt Simulations in an Alpine Catchment: 1. Model Evaluation on the Basis of Snow Cover Patterns. Water Resources Research, 1991, 27, 3171-3179.	4.2	163
58	Linking flood frequency to long-term water balance: Incorporating effects of seasonality. Water Resources Research, 2005, 41, .	4.2	161
59	Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrological Processes, 2007, 21, 435-446.	2.6	157
60	Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research, 2012, 48, .	4.2	156
61	Current European flood-rich period exceptional compared with past 500Âyears. Nature, 2020, 583, 560-566.	27.8	154
62	Scaling in hydrology. Hydrological Processes, 2001, 15, 709-711.	2.6	152
63	Controls on event runoff coefficients in the eastern Italian Alps. Journal of Hydrology, 2009, 375, 312-325.	5.4	149
64	A comparison of low flow regionalisation methods—catchment grouping. Journal of Hydrology, 2006, 323, 193-214.	5.4	148
65	A spatially distributed flash flood forecasting model. Environmental Modelling and Software, 2008, 23, 464-478.	4.5	146
66	Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrology and Earth System Sciences, 2006, 10, 353-368.	4.9	142
67	A regional snow-line method for estimating snow cover from MODIS during cloud cover. Journal of Hydrology, 2010, 381, 203-212.	5.4	137
68	Flood frequency hydrology: 3. A Bayesian analysis. Water Resources Research, 2013, 49, 675-692.	4.2	137
69	Does soil compaction increase floods? A review. Journal of Hydrology, 2018, 557, 631-642.	5.4	136
70	Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. Journal of Hydrology, 2010, 394, 101-117.	5.4	129
71	Scale effects in conceptual hydrological modeling. Water Resources Research, 2009, 45, .	4.2	124
72	Process controls on regional flood frequency: Coefficient of variation and basin scale. Water Resources Research, 1997, 33, 2967-2980.	4.2	123

#	Article	IF	CITATIONS
73	Increasing river floods: fiction or reality?. Wiley Interdisciplinary Reviews: Water, 2015, 2, 329-344.	6.5	123
74	Fragmented patterns of flood change across the United States. Geophysical Research Letters, 2016, 43, 10232-10239.	4.0	123
75	Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene. Hydrology and Earth System Sciences, 2013, 17, 5013-5039.	4.9	119
76	Regional calibration of catchment models: Potential for ungauged catchments. Water Resources Research, 2007, 43, .	4.2	118
77	The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 2021, 25, 5749-5804.	4.9	116
78	Evaluating participation in water resource management: A review. Water Resources Research, 2012, 48,	4.2	115
79	Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors, 2008, 8, 1174-1197.	3.8	112
80	Hydrologic synthesis: Across processes, places, and scales. Water Resources Research, 2006, 42, .	4.2	111
81	Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated <i>Bacteroidetes</i> for Microbial Source Tracking across Sixteen Countries on Six Continents. Environmental Science & Technology, 2013, 47, 8548-8556.	10.0	111
82	Seasonality indices for regionalizing low flows. Hydrological Processes, 2006, 20, 3851-3878.	2.6	109
83	Patterns of predictability in hydrological threshold systems. Water Resources Research, 2007, 43, .	4.2	103
84	How well do indicator variograms capture the spatial connectivity of soil moisture?. Hydrological Processes, 1998, 12, 1851-1868.	2.6	100
85	On the representative elementary area (REA) concept and its utility for distributed rainfall-runoff modelling. Hydrological Processes, 1995, 9, 313-330.	2.6	98
86	World Lines. IEEE Transactions on Visualization and Computer Graphics, 2010, 16, 1458-1467.	4.4	98
87	Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrology and Earth System Sciences, 2009, 13, 2069-2094.	4.9	97
88	Flood frequency hydrology: 2. Combining data evidence. Water Resources Research, 2008, 44, .	4.2	95
89	Comparative assessment of predictions in ungauged basins – Part 2: Flood and low flow studies. Hydrology and Earth System Sciences, 2013, 17, 2637-2652.	4.9	95
90	Initial soil moisture effects on flash flood generation – A comparison between basins of contrasting hydro-climatic conditions. Journal of Hydrology, 2016, 541, 206-217.	5.4	94

#	Article	IF	CITATIONS
91	Spatiotemporal topological kriging of runoff time series. Water Resources Research, 2007, 43, .	4.2	93
92	Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrology and Earth System Sciences, 2013, 17, 2263-2279.	4.9	93
93	Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors, 2008, 8, 1174-1197.	3.8	88
94	The influence of non-stationarity in extreme hydrological events on flood frequency estimation. Journal of Hydrology and Hydromechanics, 2016, 64, 426-437.	2.0	88
95	Catchments as space-time filters – a joint spatio-temporal geostatistical analysis of runoff and precipitation. Hydrology and Earth System Sciences, 2006, 10, 645-662.	4.9	87
96	On the role of storm duration in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences, 2009, 13, 205-216.	4.9	86
97	Causative classification of river flood events. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1353.	6.5	86
98	Ensemble prediction of floods – catchment non-linearity and forecast probabilities. Natural Hazards and Earth System Sciences, 2007, 7, 431-444.	3.6	84
99	Runoff models and flood frequency statistics for design flood estimation in Austria – Do they tell a consistent story?. Journal of Hydrology, 2012, 456-457, 30-43.	5.4	84
100	Potential of timeâ€ l apse photography of snow for hydrological purposes at the small catchment scale. Hydrological Processes, 2012, 26, 3327-3337.	2.6	84
101	Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 2011, 15, 3767-3783.	4.9	83
102	Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 2014, 18, 649-671.	4.9	83
103	Charting unknown waters—On the role of surprise in flood risk assessment and management. Water Resources Research, 2015, 51, 6399-6416.	4.2	83
104	On hydrological predictability. Hydrological Processes, 2005, 19, 3923-3929.	2.6	82
105	Quantifying space-time dynamics of flood event types. Journal of Hydrology, 2010, 394, 213-229.	5.4	82
106	The principle of â€~maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1377-1386.	4.0	82
107	Entering the Era of Distributed Snow Models. Hydrology Research, 1994, 25, 1-24.	2.7	80
108	Identification of coherent flood regions across Europe by using the longest streamflow records. Journal of Hydrology, 2015, 528, 341-360.	5.4	79

#	Article	IF	CITATIONS
109	The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory. Hydrology and Earth System Sciences, 2016, 20, 227-255.	4.9	77
110	On the role of the runoff coefficient in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences, 2009, 13, 577-593.	4.9	76
111	MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites. Hydrology and Earth System Sciences, 2012, 16, 2365-2377.	4.9	75
112	Attribution of regional flood changes based on scaling fingerprints. Water Resources Research, 2016, 52, 5322-5340.	4.2	75
113	Joint Trends in Flood Magnitudes and Spatial Extents Across Europe. Geophysical Research Letters, 2020, 47, e2020GL087464.	4.0	75
114	Identifying Land Use/Cover Dynamics in the Koga Catchment, Ethiopia, from Multi-Scale Data, and Implications for Environmental Change. ISPRS International Journal of Geo-Information, 2013, 2, 302-323.	2.9	73
115	Conceptualizing socioâ€hydrological drought processes: The case of the Maya collapse. Water Resources Research, 2016, 52, 6222-6242.	4.2	73
116	Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrology and Earth System Sciences, 2009, 13, 259-271.	4.9	69
117	Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria / Analyse comparative de la saisonnalité de caractéristiques hydrologiques en Slovaquie et en Autriche. Hydrological Sciences Journal, 2009, 54, 456-473.	2.6	68
118	Point snowmelt models with different degrees of complexity — Internal processes. Journal of Hydrology, 1991, 129, 127-147.	5.4	67
119	National flood discharge mapping in Austria. Natural Hazards, 2008, 46, 53-72.	3.4	67
120	Generalised synthesis of space–time variability in flood response: An analytical framework. Journal of Hydrology, 2010, 394, 198-212.	5.4	67
121	Dependence between flood peaks and volumes: a case study on climate and hydrological controls. Hydrological Sciences Journal, 2015, 60, 968-984.	2.6	67
122	Distributed Snowmelt Simulations in an Alpine Catchment: 2. Parameter Study and Model Predictions. Water Resources Research, 1991, 27, 3181-3188.	4.2	66
123	A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions. Natural Hazards and Earth System Sciences, 2012, 12, 3287-3306.	3.6	66
124	A national low flow estimation procedure for Austria. Hydrological Sciences Journal, 2007, 52, 625-644.	2.6	65
125	Flash floods: Observations and analysis of hydro-meteorological controls. Journal of Hydrology, 2010, 394, 1-3.	5.4	65
126	Gaining insight into interdisciplinary research and education programmes: A framework for evaluation. Research Policy, 2018, 47, 35-48.	6.4	64

8

#	Article	IF	CITATIONS
127	Low flow estimates from short stream flow records—a comparison of methods. Journal of Hydrology, 2005, 306, 264-286.	5.4	63
128	Step changes in the flood frequency curve: Process controls. Water Resources Research, 2012, 48, .	4.2	63
129	Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrology and Earth System Sciences, 2014, 18, 4773-4789.	4.9	63
130	Virtual laboratories: new opportunities for collaborative water science. Hydrology and Earth System Sciences, 2015, 19, 2101-2117.	4.9	63
131	Barriers to the exchange of hydrometeorological data in Europe: Results from a survey and implications for data policy. Journal of Hydrology, 2010, 394, 63-77.	5.4	62
132	Factors influencing long range dependence in streamflow of European rivers. Hydrological Processes, 2014, 28, 1573-1586.	2.6	61
133	Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resources Research, 2017, 53, 1288-1308.	4.2	61
134	Identification of phosphorus emission hotspots in agricultural catchments. Science of the Total Environment, 2012, 433, 74-88.	8.0	59
135	Spatial patterns and characteristics of flood seasonality in Europe. Hydrology and Earth System Sciences, 2018, 22, 3883-3901.	4.9	59
136	Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences. Hydrological Sciences Journal, 2016, 61, 2803-2817.	2.6	57
137	Process controls on the statistical flood moments ―a data based analysis. Hydrological Processes, 2009, 23, 675-696.	2.6	56
138	Largeâ€scale heavy precipitation over central Europe and the role of atmospheric cyclone track types. International Journal of Climatology, 2018, 38, e497-e517.	3.5	55
139	Flood trends in Europe: are changes in small and big floods different?. Hydrology and Earth System Sciences, 2020, 24, 1805-1822.	4.9	54
140	Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging. Hydrology and Earth System Sciences, 2011, 15, 715-727.	4.9	54
141	Spatial prediction on river networks: comparison of top-kriging with regional regression. Hydrological Processes, 2014, 28, 315-324.	2.6	53
142	Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia. Remote Sensing of Environment, 2012, 120, 188-196.	11.0	51
143	Evolutionary leap in largeâ€scale flood risk assessment needed. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1266.	6.5	50
144	Spaceâ€Time Patterns of Meteorological Drought Events in the European Greater Alpine Region Over the Past 210 Years. Water Resources Research, 2017, 53, 9807-9823.	4.2	49

#	Article	IF	CITATIONS
145	Prediction in a socio-hydrological world. Hydrological Sciences Journal, 0, , 1-8.	2.6	47
146	Modeling the interaction between flooding events and economic growth. Ecological Economics, 2016, 129, 193-209.	5.7	47
147	Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?. Hydrology and Earth System Sciences, 2020, 24, 3493-3511.	4.9	46
148	Annual water, sediment, nutrient, and organic carbon fluxes in river basins: A global metaâ€analysis as a function of scale. Water Resources Research, 2015, 51, 8949-8972.	4.2	45
149	Why has catchment evaporation increased in the past 40Âyears? A data-based study in Austria. Hydrology and Earth System Sciences, 2018, 22, 5143-5158.	4.9	45
150	Three-dimensional flow patterns at the river–aquifer interface — a case study at the Danube. Advances in Water Resources, 2010, 33, 1375-1387.	3.8	44
151	The Growth of Hydrological Understanding: Technologies, Ideas, and Societal Needs Shape the Field. Water Resources Research, 2017, 53, 8137-8146.	4.2	44
152	Spatiotemporal flood sensitivity to annual precipitation: Evidence for landscapeâ€climate coevolution. Water Resources Research, 2014, 50, 5492-5509.	4.2	43
153	rtop: An R package for interpolation of data with a variable spatial support, with an example from river networks. Computers and Geosciences, 2014, 67, 180-190.	4.2	43
154	The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model. Water Resources Research, 2019, 55, 1312-1336.	4.2	43
155	Sampling Scale Effects in Random Fields and Implications for Environmental Monitoring. Environmental Monitoring and Assessment, 2006, 114, 521-552.	2.7	42
156	Vegetation regulation on streamflow intraâ€annual variability through adaption to climate variations. Geophysical Research Letters, 2015, 42, 10,307.	4.0	42
157	Quantifying effects of catchments storage thresholds on step changes in the flood frequency curve. Water Resources Research, 2013, 49, 6946-6958.	4.2	41
158	Long term variability of the Danube River flow and its relation to precipitation and air temperature. Journal of Hydrology, 2014, 519, 871-880.	5.4	41
159	A reflection on the first 50 years of <i>Water Resources Research</i> . Water Resources Research, 2015, 51, 7829-7837.	4.2	40
160	The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment. Science of the Total Environment, 2016, 542, 935-945.	8.0	40
161	Flood forecast errors and ensemble spread—A case study. Water Resources Research, 2012, 48, .	4.2	39
162	Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrology and Earth System Sciences, 2021, 25, 1347-1364.	4.9	39

#	Article	IF	CITATIONS
163	Flood warning ―on the value of local information. International Journal of River Basin Management, 2008, 6, 41-50.	2.7	38
164	A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resources Research, 2016, 52, 7086-7104.	4.2	38
165	Comparison of three types of laser optical disdrometers under natural rainfall conditions. Hydrological Sciences Journal, 2020, 65, 524-535.	2.6	38
166	Understanding the relationship between rainfall and flood probabilities through combined intensity-duration-frequency analysis. Journal of Hydrology, 2021, 602, 126759.	5.4	38
167	Evaluating the snow component of a flood forecasting model. Hydrology Research, 2012, 43, 762-779.	2.7	37
168	A dynamic framework for flood risk. Water Security, 2017, 1, 3-11.	2.5	37
169	On the estimation of spatially representative plot scale saturated hydraulic conductivity in an agricultural setting. Journal of Hydrology, 2019, 570, 106-117.	5.4	37
170	Probabilistic envelope curves for extreme rainfall events. Journal of Hydrology, 2009, 378, 263-271.	5.4	36
171	Nodes on Ropes: A Comprehensive Data and Control Flow for Steering Ensemble Simulations. IEEE Transactions on Visualization and Computer Graphics, 2011, 17, 1872-1881.	4.4	36
172	Temporal variation of suspended sediment transport in the Koga catchment, North Western Ethiopia and environmental implications. Hydrological Processes, 2014, 28, 5972-5984.	2.6	36
173	A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Advances in Water Resources, 2019, 127, 89-108.	3.8	36
174	On the definition of the flow width for calculating specific catchment area patterns from gridded elevation data. Hydrological Processes, 2005, 19, 2539-2556.	2.6	35
175	Mapping snow cover from daily Collection 6 MODIS products over Austria. Journal of Hydrology, 2020, 590, 125548.	5.4	35
176	Uncertainty contributions to low-flow projections in Austria. Hydrology and Earth System Sciences, 2016, 20, 2085-2101.	4.9	34
177	Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale. Water Resources Research, 2017, 53, 8277-8292.	4.2	34
178	Climate and catchment controls on the performance of regional flood simulations. Journal of Hydrology, 2011, 402, 340-356.	5.4	33
179	Flashiness of mountain streams in Slovakia and Austria. Journal of Hydrology, 2011, 405, 392-401.	5.4	33
180	Re-suspension of bed sediment in a small stream – results from two flushing experiments. Hydrology and Earth System Sciences, 2014, 18, 1043-1052.	4.9	33

#	Article	IF	CITATIONS
181	Effects of fluctuations in river water level on virus removal by bank filtration and aquifer passage — A scenario analysis. Journal of Contaminant Hydrology, 2013, 147, 34-44.	3.3	32
182	A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries. Proceedings of the International Association of Hydrological Sciences, 0, 370, 89-95.	1.0	32
183	The Influence of Uncertainty in Air Temperature and Albedo on Snowmelt. Hydrology Research, 1991, 22, 95-108.	2.7	30
184	Emerging Approaches to Hydrological Risk Management in a Changing World. , 2013, , 3-10.		30
185	Visual Analysis and Steering of Flooding Simulations. IEEE Transactions on Visualization and Computer Graphics, 2013, 19, 1062-1075.	4.4	30
186	The Added Value of Different Data Types for Calibrating and Testing a Hydrologic Model in a Small Catchment. Water Resources Research, 2020, 56, e2019WR026153.	4.2	30
187	Exploring the Influence of Smallholders' Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socioâ€Hydrological Modeling. Water Resources Research, 2018, 54, 2580-2604.	4.2	29
188	High abundance of genetic Bacteroidetes markers for total fecal pollution in pristine alpine soils suggests lack in specificity for feces. Journal of Microbiological Methods, 2012, 88, 433-435.	1.6	28
189	Fifty years of <i>Water Resources Research</i> : Legacy and perspectives for the science of hydrology. Water Resources Research, 2015, 51, 6797-6803.	4.2	28
190	A twoâ€dimensional numerical scheme of dry/wet fronts for the Saintâ€Venant system of shallow water equations. International Journal for Numerical Methods in Fluids, 2015, 77, 159-182.	1.6	28
191	A regional comparative analysis of empirical and theoretical flood peak-volume relationships. Journal of Hydrology and Hydromechanics, 2016, 64, 367-381.	2.0	26
192	Informed attribution of flood changes to decadal variation of atmospheric, catchment and river drivers in Upper Austria. Journal of Hydrology, 2019, 577, 123919.	5.4	26
193	Scale Effects in Estimating the Variogram and Implications for Soil Hydrology. Vadose Zone Journal, 2006, 5, 153-167.	2.2	26
194	Impact of modellers' decisions on hydrological a priori predictions. Hydrology and Earth System Sciences, 2014, 18, 2065-2085.	4.9	25
195	Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: A comparison of prototypes. Water Research, 2016, 101, 252-261.	11.3	25
196	The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model. Hydrology and Earth System Sciences, 2021, 25, 1389-1410.	4.9	25
197	Modelling snowmelt in a mountainous river basin on an event basis. Journal of Hydrology, 1990, 113, 207-229.	5.4	24
198	Learning from the Ancient Maya: Exploring the Impact of Drought on Population Dynamics. Ecological Economics, 2019, 157, 1-16.	5.7	24

#	Article	IF	CITATIONS
199	Extreme rainstorms: Comparing regional envelope curves to stochastically generated events. Water Resources Research, 2012, 48, .	4.2	23
200	Spatial Prediction of Stream Temperatures Using Top-Kriging with an External Drift. Environmental Modeling and Assessment, 2013, 18, 671-683.	2.2	23
201	Understanding Heavy Tails of Flood Peak Distributions. Water Resources Research, 2022, 58, .	4.2	23
202	Effect of river training on flood retention of the Bavarian Danube. Journal of Hydrology and Hydronechanics, 2016, 64, 349-356.	2.0	22
203	Promoting interdisciplinary education â^' the Vienna Doctoral Programme on Water Resource Systems. Hydrology and Earth System Sciences, 2012, 16, 457-472.	4.9	21
204	A fuzzy <scp>B</scp> ayesian approach to flood frequency estimation with imprecise historical information. Water Resources Research, 2016, 52, 6730-6750.	4.2	21
205	Separation of Scales in Transpiration Effects on Low Flows: A Spatial Analysis in the Hydrological Open Air Laboratory. Water Resources Research, 2018, 54, 6168-6188.	4.2	21
206	Detecting Floodâ€Rich and Floodâ€Poor Periods in Annual Peak Discharges Across Europe. Water Resources Research, 2020, 56, e2019WR026575.	4.2	21
207	Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept. Hydrology and Earth System Sciences, 2021, 25, 4081-4097.	4.9	21
208	A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System Sciences, 2016, 20, 3967-3985.	4.9	20
209	A Pedotransfer Function for Field cale Saturated Hydraulic Conductivity of a Small Watershed. Vadose Zone Journal, 2019, 18, 1-15.	2.2	20
210	Downward approach to hydrological prediction. Hydrological Processes, 2003, 17, 2099-2099.	2.6	19
211	Vb Cyclones Synchronized With the Arcticâ€∕North Atlantic Oscillation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3259-3278.	3.3	18
212	Floods in Austria. , 2019, , 169-177.		18
213	Space–Time Characteristics of Areal Reduction Factors and Rainfall Processes. Journal of Hydrometeorology, 2020, 21, 671-689.	1.9	18
214	Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate. Remote Sensing, 2018, 10, 1788.	4.0	17
215	Identifying the dominant controls on macropore flow velocity in soils: A meta-analysis. Journal of Hydrology, 2018, 567, 590-604.	5.4	17
216	A New Framework for Exploring Process Controls of Flow Duration Curves. Water Resources Research, 2020, 56, e2019WR026083.	4.2	17

#	Article	IF	CITATIONS
217	Pathways and composition of dissolved organic carbon in a small agricultural catchment during base flow conditions. Ecohydrology and Hydrobiology, 2022, 22, 96-112.	2.3	17
218	Wavelet based deseasonalization for modelling and forecasting of daily discharge series considering long range dependence. Journal of Hydrology and Hydromechanics, 2014, 62, 24-32.	2.0	16
219	Decadal Trends of Soil Loss and Runoff in the Koga Catchment, Northwestern Ethiopia. Land Degradation and Development, 2017, 28, 1806-1819.	3.9	16
220	Debates—Hypothesis testing in hydrology: Introduction. Water Resources Research, 2017, 53, 1767-1769.	4.2	16
221	Potential of timeâ€lapse photography for identifying saturation area dynamics on agricultural hillslopes. Hydrological Processes, 2017, 31, 3610-3627.	2.6	16
222	Perennial springs provide information to predict low flows in mountain basins. Hydrological Sciences Journal, 2017, 62, 2469-2481.	2.6	16
223	Climate More Important for Chinese Flood Changes Than Reservoirs and Land Use. Geophysical Research Letters, 2021, 48, e2021GL093061.	4.0	16
224	Preface to the special section on Scale Problems in Hydrology. Water Resources Research, 1997, 33, 2881-2881.	4.2	15
225	MODIS-Based Snow Cover Products, Validation, and Hydrologic Applications. , 2012, , 185-212.		15
226	Predictions in ungauged basins – where do we stand?. Proceedings of the International Association of Hydrological Sciences, 0, 373, 57-60.	1.0	15
227	Identifying Space-time Patterns of Runoff Generation: A Case Study from the Löhnersbach Catchment, Austrian Alps. Advances in Global Change Research, 2005, , 309-320.	1.6	14
228	Estimating aquifer transmissivities — on the value of auxiliary data. Journal of Hydrology, 1995, 165, 85-99.	5.4	13
229	Spatial Variability of Soil Moisture and Its Implications for Scaling. , 2003, , 119-142.		13
230	A process-based analysis of the suitability of copula types for peak-volume flood relationships. Proceedings of the International Association of Hydrological Sciences, 0, 370, 183-188.	1.0	13
231	Reply to comment by Tromp van Meerveld and McDonnell on Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 2005, 303, 313-315.	5.4	12
232	Identifying runoff routing parameters for operational flood forecasting in small to medium sized catchments / Identification de paramètres de propagation d'écoulement pour la prévision opérationnelle de crue au sein de bassins versants de petite à moyenne taille. Hydrological Sciences Journal, 2008, 53, 112-129.	2.6	12
233	On the future of journal publications in hydrology. Hydrology Research, 2014, 45, 515-518.	2.7	12
234	Indirect nitrogen losses of managed soils contributing to greenhouse emissions of agricultural areas in Austria: results from lysimeter studies. Nutrient Cycling in Agroecosystems, 2015, 101, 351-364.	2.2	12

#	Article	IF	CITATIONS
235	Real time flood forecasting in the Upper Danube basin. Journal of Hydrology and Hydromechanics, 2016, 64, 404-414.	2.0	12
236	Kepler shuffle for real-world flood simulations on GPUs. International Journal of High Performance Computing Applications, 2016, 30, 379-395.	3.7	12
237	Moving socio-hydrologic modelling forward: unpacking hidden assumptions, values and model structure by engaging with stakeholders: reply to "What is the role of the model in socio-hydrology?― Hydrological Sciences Journal, 2018, 63, 1444-1446.	2.6	12
238	Spatial characteristics of precipitation shortfalls in the Greater Alpine Region—a data-based analysis from observations. Theoretical and Applied Climatology, 2019, 136, 717-731.	2.8	12
239	Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment. Hydrology and Earth System Sciences, 2021, 25, 2327-2352.	4.9	12
240	Flow directions of streamâ€groundwater exchange in a headwater catchment during the hydrologic year. Hydrological Processes, 2021, 35, e14310.	2.6	12
241	Editorial: Toward 50 years of Water Resources Research. Water Resources Research, 2013, 49, 7841-7842.	4.2	11
242	The Kühtai data set: 25 years of lysimetric, snow pillow, and meteorological measurements. Water Resources Research, 2017, 53, 5158-5165.	4.2	11
243	Disentangling Drivers of Meteorological Droughts in the European Greater Alpine Region During the Last Two Centuries. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12404-12425.	3.3	11
244	Controls on event runoff coefficients and recession coefficients for different runoff generation mechanisms identified by three regression methods. Journal of Hydrology and Hydromechanics, 2020, 68, 155-169.	2.0	10
245	Characteristics and process controls of statistical flood moments in Europe – a data-based analysis. Hydrology and Earth System Sciences, 2021, 25, 5535-5560.	4.9	10
246	Joint Editorial—On the future of journal publications in hydrology. Hydrological Sciences Journal, 2014, 59, 955-958.	2.6	9
247	Joint editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. Water Resources Research, 2016, 52, 2399-2402.	4.2	9
248	Comparison of Fast Shallow-Water Schemes on Real-World Floods. Journal of Hydraulic Engineering, 2020, 146, 05019005.	1.5	9
249	Spatial and temporal variability of event runoff characteristics in a small agricultural catchment. Hydrological Sciences Journal, 2020, 65, 2185-2195.	2.6	9
250	Agricultural and Rural Watersheds. , 2011, , 399-431.		9
251	Conceptual model building inspired by field-mapped runoff generation mechanisms. Journal of Hydrology and Hydromechanics, 2018, 66, 303-315.	2.0	9
252	Joint editorial – Fostering innovation and improving impact assessment for journal publications in hydrology. Hydrological Sciences Journal, 0, , 1-4.	2.6	8

#	Article	IF	CITATIONS
253	Temporal Scaling of Streamflow Elasticity to Precipitation: A Global Analysis. Water Resources Research, 2022, 58, .	4.2	8
254	On the future of journal publications in hydrology. Water Resources Research, 2014, 50, 2795-2797.	4.2	7
255	Emerging outcomes from a cross-disciplinary doctoral programme on water resource systems. Water Policy, 2017, 19, 463-478.	1.5	7
256	A geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations. Hydrology and Earth System Sciences, 2018, 22, 4633-4648.	4.9	7
257	Event-transport of beta-d-glucuronidase in an agricultural headwater stream: Assessment of seasonal patterns by on-line enzymatic activity measurements and environmental isotopes. Science of the Total Environment, 2019, 662, 236-245.	8.0	7
258	Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale. Water (Switzerland), 2020, 12, 3457.	2.7	7
259	Reducing the Flood Risk of Art Cities: The Case of Florence. Journal of Hydraulic Engineering, 2020, 146, .	1.5	7
260	Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Climate Dynamics, 2021, 57, 1009-1021.	3.8	7
261	Seasonality of runoff and precipitation regimes along transects in Peru and Austria. Journal of Hydrology and Hydromechanics, 2017, 65, 347-358.	2.0	7
262	People and water: understanding integrated systems needs integrated approaches. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 819-832.	1.4	7
263	Landform – Hydrology Feedbacks. Lecture Notes in Earth Sciences, 2009, , 117-126.	0.5	6
264	Modelling the interaction between flooding events and economic growth. Proceedings of the International Association of Hydrological Sciences, 0, 369, 3-6.	1.0	6
265	Process Controls on Flood Seasonality in Brazil. Geophysical Research Letters, 2022, 49, .	4.0	6
266	Flood generation: process patterns from the raindrop to the ocean. Hydrology and Earth System Sciences, 2022, 26, 2469-2480.	4.9	6
267	The within-day behaviour of 6 minute rainfall intensity in Australia. Hydrology and Earth System Sciences, 2011, 15, 2561-2579.	4.9	5
268	Invigorating Hydrological Research Through Journal Publications. Water Resources Research, 2020, 56, .	4.2	5
269	A comparison between generalized least squares regression and top-kriging for homogeneous cross-correlated flood regions. Hydrological Sciences Journal, 2021, 66, 565-579.	2.6	5
270	Hydrology of the Carpathian Basin: interactions of climatic drivers and hydrological processes on local and regional scales – HydroCarpath Research. Journal of Hydrology and Hydromechanics, 2020, 68, 128-133.	2.0	5

#	Article	IF	CITATIONS
271	Agricultural intensification vs. climate change: what drives long-term changes in sediment load?. Hydrology and Earth System Sciences, 2022, 26, 3021-3036.	4.9	5
272	How do Spatial Scale, Noise, and Reference Data affect Empirical Estimates of Error in ASAR-Derived 1 km Resolution Soil Moisture?. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3880-3891.	4.9	4
273	Similarity of empirical copulas of flood peak-volume relationships: a regional case study of North-West Austria. Contributions To Geophysics and Geodesy, 2016, 46, 155-178.	0.6	4
274	Invigorating hydrological research through journal publications. Hydrological Sciences Journal, 2018, 63, 1113-1117.	2.6	4
275	Reply to Comment by Zhang on "Exploring the Influence of Smallholders' Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socioâ€hydrological Modeling― Water Resources Research, 2019, 55, 2536-2543.	4.2	4
276	High-Frequency Stable-Isotope Measurements of Evapotranspiration Partitioning in a Maize Field. Water (Switzerland), 2020, 12, 3048.	2.7	4
277	Stepwise prediction of runoff using proxy data in a small agricultural catchment. Journal of Hydrology and Hydromechanics, 2021, 69, 65-75.	2.0	4
278	Thematic Issue on Floods in the Danube basin – processes, patterns, predictions. Journal of Hydrology and Hydromechanics, 2016, 64, 301-303.	2.0	4
279	Processing of nationwide topographic data for ensuring consistent river network representation. Journal of Hydrology X, 2021, 13, 100106.	1.6	4
280	Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments. Hydrology, 2022, 9, 38.	3.0	4
281	Scaling and Regionalization in Hydrology. , 2011, , 519-535.		3
282	Comparing Geostatistical Models for River Networks. Quantitative Geology and Geostatistics, 2012, , 543-553.	0.1	3
283	Effects of riverbank restoration on the removal of dissolved organic carbon by soil passage during floods – A scenario analysis. Journal of Hydrology, 2014, 512, 195-205.	5.4	3
284	Joint editorial: Invigorating hydrological research through journal publications. Hydrology and Earth System Sciences, 2018, 22, 5735-5739.	4.9	3
285	Efficiency of non-structural flood mitigation measures. , 2008, , 723-731.		3
286	Partitioning evapotranspiration using stable isotopes and Lagrangian dispersion analysis in a small agricultural catchment. Journal of Hydrology and Hydromechanics, 2020, 68, 134-143.	2.0	3
287	FLOODS IN AUSTRIA. , 2006, , 81-90.		3
288	Geostatistics for automatic estimation of environmental variables—some simple solutions. Georisk, 2008, 2, 259-272.	3.5	2

#	Article	IF	CITATIONS
289	Joint Editorial "On the future of journal publications in hydrology". Hydrology and Earth System Sciences, 2014, 18, 2433-2435.	4.9	2
290	A regional look at the selection of a process-oriented model for flood peak/volume relationships. Proceedings of the International Association of Hydrological Sciences, 0, 373, 61-67.	1.0	2
291	Joint Editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. Hydrology and Earth System Sciences, 2016, 20, 1081-1084.	4.9	2
292	Process-based selection of copula types for flood peak-volume relationships in Northwest Austria: a case study. Contributions To Geophysics and Geodesy, 2016, 46, 245-268.	0.6	2
293	The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites. Hydrology and Earth System Sciences, 2022, 26, 1779-1799.	4.9	2
294	Locally Relevant Highâ€Resolution Hydrodynamic Modeling of River Floods at the Regional Scale. Water Resources Research, 2022, 58, .	4.2	2
295	PUB in practice: case studies. , 0, , 270-360.		1
296	Joint Editorial—Fostering Innovation and Improving Impact Assessment for Journal Publications in Hydrology. Vadose Zone Journal, 2016, 15, 1-4.	2.2	1
297	Should auld acquaintance be forgot? Comment on "Farewell, <i>HSJ</i> !—address from the retiring editor―by Z.W. Kundzewicz. Hydrological Sciences Journal, 0, , 1-2.	2.6	1
298	A propensity index for surface runoff on a karst plateau. Hydrology and Earth System Sciences, 2018, 22, 6147-6161.	4.9	1
299	Dynamics of the flood response to slow-fast landscape-climate feedbacks. Proceedings of the International Association of Hydrological Sciences, 0, 370, 125-130.	1.0	1
300	Human signatures derived from nighttime lights along the Eastern Alpine river network in Austria and Italy. Proceedings of the International Association of Hydrological Sciences, 0, 373, 131-136.	1.0	1
301	Joint Editorial Invigorating Hydrological Research through Journal Publications. Journal of Hydrology and Hydromechanics, 2018, 66, 257-260.	2.0	1
302	Comment on Book Review ["Scale issues in hydrological modelingâ€]. Eos, 1996, 77, 307.	0.1	0
303	Corrigendum to "Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response" published in Hydrol. Earth Syst. Sci., 15, 3767–3783, 2011. Hydrology and Earth System Sciences, 2012, 16, 1237-1237.	4.9	Ο
304	Appreciation of peer reviewers for 2014. Water Resources Research, 2015, 51, 5869-5887.	4.2	0
305	Appreciation of peer reviewers for 2016. Water Resources Research, 2017, 53, 4542-4561.	4.2	0
306	Invigorating Hydrological Research through Journal Publications. Journal of Hydrometeorology, 2018, 19, 1713-1719.	1.9	0

#	Article	IF	CITATIONS
307	Joint Editorial: Invigorating Hydrological Research through Journal Publications. Vadose Zone Journal, 2018, 17, 180001ed.	2.2	0
308	Invigorating hydrological research through journal publications. Ecohydrology, 2018, 11, e2016.	2.4	0
309	Wassernutzung und Wassereffizienz in Landschaften. Acatech-Studie, 2012, , 91-157.	0.3	0
310	Ingenieurhydrologie. , 2015, , 383-458.		0
311	Appreciation of peer reviewers for 2015. Water Resources Research, 2016, 52, 2380-2398.	4.2	0
312	Estimating parameter values of a socio-hydrological flood model. Proceedings of the International Association of Hydrological Sciences, 0, 379, 193-198.	1.0	0
313	Joint editorial: Invigorating hydrological research through journal publications. Proceedings of the International Association of Hydrological Sciences, 0, 380, 3-8.	1.0	0
314	RIVER LOW FLOWS IN AUSTRIA. , 2006, , 313-322.		0
315	Topological Kriging of Runoff. , 2008, , 221-231.		0