Mehmet R Dokmeci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinks for 3D bioprinting: an overview. Biomaterials Science, 2018, 6, 915-946.	2.6	828
2	Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016, 106, 58-68.	5.7	727
3	Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016, 110, 45-59.	5.7	699
4	Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Lowâ€Viscosity Bioink. Advanced Materials, 2016, 28, 677-684.	11.1	677
5	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 108-118.	3.9	595
6	Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2293-E2302.	3.3	570
7	Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-3068.	7.3	530
8	Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6, 024105.	3.7	528
9	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507
10	A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016, 8, 014101.	3.7	466
11	Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7, 8837.	1.6	407
12	Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends in Biotechnology, 2016, 34, 470-482.	4.9	387
13	Reduced Graphene Oxideâ€GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Small, 2016, 12, 3677-3689.	5.2	385
14	Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release, 2014, 190, 82-93.	4.8	308
15	Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting. Advanced Materials, 2018, 30, e1800242.	11.1	277
16	Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	11.1	275
17	Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 2018, 14, e1703509.	5.2	257
18	Microfluidic techniques for development of 3D vascularized tissue, Biomaterials, 2014, 35, 7308-7325	57	254

2

Менмет R Dokmeci

#	Article	IF	CITATIONS
19	Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 2014, 35, 7346-7354.	5.7	249
20	A Bioactive Carbon Nanotubeâ€Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016, 28, 3280-3289.	11.1	199
21	3D Bioprinting in Skeletal Muscle Tissue Engineering. Small, 2019, 15, e1805530.	5.2	192
22	A Textile Dressing for Temporal and Dosage Controlled Drug Delivery. Advanced Functional Materials, 2017, 27, 1702399.	7.8	187
23	Bioprinted thrombosis-on-a-chip. Lab on A Chip, 2016, 16, 4097-4105.	3.1	183
24	Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering, 2015, 7, 101-112.	3.8	182
25	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Analytical Chemistry, 2016, 88, 10019-10027.	3.2	181
26	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	3.9	177
27	Organs-on-a-chip: a new tool for drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 335-352.	2.5	175
28	Flexible pH‣ensing Hydrogel Fibers for Epidermal Applications. Advanced Healthcare Materials, 2016, 5, 711-719.	3.9	172
29	Integrinâ€Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700289.	3.9	169
30	Roomâ€Temperatureâ€Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics. Advanced Materials, 2020, 32, e1904752.	11.1	158
31	Layerâ€byâ€Layer Assembly of 3D Tissue Constructs with Functionalized Graphene. Advanced Functional Materials, 2014, 24, 6136-6144.	7.8	151
32	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	7.8	146
33	Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 2018, 30, 1704189.	11.1	140
34	From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomedical Materials (Bristol), 2015, 10, 034006.	1.7	134
35	Hydrogels for cardiac tissue engineering. NPG Asia Materials, 2014, 6, e99-e99.	3.8	132
36	Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Scientific Reports, 2016, 6, 24598.	1.6	132

Менмет R Doкмесі

#	Article	IF	CITATIONS
37	Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 37-62.	6.6	123
38	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	7.8	112
39	Organâ€onâ€aâ€Chip for Cancer and Immune Organs Modeling. Advanced Healthcare Materials, 2019, 8, e1801363.	3.9	111
40	Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. Advanced Healthcare Materials, 2016, 5, 175-184.	3.9	109
41	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small, 2020, 16, e1905910.	5.2	104
42	Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosensors and Bioelectronics, 2014, 56, 359-367.	5.3	99
43	Biodegradable <i>β</i> yclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	3.9	91
44	A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. Advanced Functional Materials, 2020, 30, 2000086.	7.8	91
45	Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Scientific Reports, 2017, 7, 9220.	1.6	90
46	Three-Dimensional Bioprinting of Functional Skeletal Muscle Tissue Using GelatinMethacryloyl-Alginate Bioinks. Micromachines, 2019, 10, 679.	1.4	87
47	A cost-effective fluorescence mini-microscope for biomedical applications. Lab on A Chip, 2015, 15, 3661-3669.	3.1	86
48	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	6.6	80
49	Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab on A Chip, 2016, 16, 1579-1586.	3.1	79
50	Protein/polysaccharideâ€based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 769-781.	2.1	79
51	Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€aâ€Chip Model. Small, 2017, 13, 1603737.	5.2	75
52	Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials, 2022, 285, 121479.	5.7	68
53	Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025718.	2.9	67
54	The emergence of 3D bioprinting in organ-on-chip systems. Progress in Biomedical Engineering, 2019, 1, 012001.	2.8	67

Менмет R Dokmeci

#	Article	IF	CITATIONS
55	Advancing Tissue Engineering: A Tale of Nanoâ€, Microâ€, and Macroscale Integration. Small, 2016, 12, 2130-2145.	5.2	62
56	In situ three-dimensional printing for reparative and regenerative therapy. Biomedical Microdevices, 2019, 21, 42.	1.4	61
57	Biodegradable microneedle patch for transdermal gene delivery. Nanoscale, 2020, 12, 16724-16729.	2.8	57
58	A Heartâ€Breast Cancerâ€onâ€a hip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. Small, 2021, 17, e2004258.	5.2	57
59	Engineering Precision Medicine. Advanced Science, 2019, 6, 1801039.	5.6	55
60	Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics. Advanced Functional Materials, 2020, 30, 1906016.	7.8	55
61	Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. Sensors and Actuators B: Chemical, 2018, 262, 625-636.	4.0	54
62	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.	3.7	54
63	A Foreign Body Responseâ€onâ€aâ€Chip Platform. Advanced Healthcare Materials, 2019, 8, e1801425.	3.9	51
64	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. Chemistry of Materials, 2016, 28, 3641-3648.	3.2	49
65	Labâ€onâ€aâ€Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. Advanced Materials, 2022, 34, e2108389.	11.1	48
66	Micro- and Nanoengineering Approaches to Control Stem Cell-Biomaterial Interactions. Journal of Functional Biomaterials, 2011, 2, 88-106.	1.8	47
67	Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Scientific Reports, 2016, 6, 22691.	1.6	44
68	All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Biosensors and Bioelectronics, 2014, 54, 462-467.	5.3	35
69	Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators. Scientific Reports, 2016, 6, 22237.	1.6	34
70	Cancerâ€onâ€a hip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. Small, 2021, 17, e2004282.	5.2	30
71	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. Lab on A Chip, 2020, 20, 4205-4214.	3.1	27
72	Coâ€Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. Small, 2022, 18, e2107714.	5.2	23

Менмет R Dokmeci

#	Article	IF	CITATIONS
73	Healthy and diseased <i>in vitro</i> models of vascular systems. Lab on A Chip, 2021, 21, 641-659.	3.1	18
74	Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artificial Organs, 2022, 46, .	1.0	16
75	Platinum nanopetal-based potassium sensors for acute cell death monitoring. RSC Advances, 2016, 6, 40517-40526.	1.7	15
76	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissueâ€onâ€aâ€Chip for Drug Screening. Small Methods, 2020, 4, 2000438.	4.6	15
77	Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. PLoS ONE, 2015, 10, e0135859.	1.1	15
78	Controlling Incoming Macrophages to Implants: Responsiveness of Macrophages to Gelatin Micropatterns under M1/M2 Phenotype Defining Biochemical Stimulations. Advanced Biology, 2017, 1, 1700041.	3.0	12
79	Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Applied Bio Materials, 2020, 3, 6908-6918.	2.3	12
80	Smart flexible wound dressing with wireless drug delivery. , 2015, , .		11
81	Microfluidics in biofabrication. Biofabrication, 2020, 12, 030201.	3.7	10
82	Wireless flexible smart bandage for continuous monitoring of wound oxygenation. , 2014, , .		9
83	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	11.1	9
84	Enhancement of label-free biosensing of cardiac troponin I. , 2020, 11251, .		7
85	Wearable Tactile Sensors: Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables (Adv.) Tj ETQq1 1	0.784314 7.8	rgBT /Overlo
86	Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. Biofabrication, 2022, 14, 014104.	3.7	5
87	pH‣ensing Hydrogel Fibers: Flexible pH‣ensing Hydrogel Fibers for Epidermal Applications (Adv.) Tj ETQq1 1	0,784314	rgٍBT /Over
88	Bioprinting: Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting (Adv. Mater.) Tj ETQqC	0.0 rgBT	/Oyerlock 10
89	Smart Bandages: Smart Bandage for Monitoring and Treatment of Chronic Wounds (Small 33/2018). Small, 2018, 14, 1870150.	5.2	4
90	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). Small, 2020, 16, 2070086.	5.2	4

6

Менмет R Doкмесі

#	Article	IF	CITATIONS
91	Biosensors: Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes (Adv. Sci. 5/2017). Advanced Science, 2017, 4, .	5.6	3
92	Hydrogels: Roomâ€Temperatureâ€Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics (Adv. Mater. 1/2020). Advanced Materials, 2020, 32, 2070005.	11.1	3
93	Hall of Fame Article: Minimally Invasive and Regenerative Therapeutics (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970005.	11.1	2
94	Hydrogelâ€Enabled Transfer Printing: Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070038.	7.8	2
95	Organâ€Onâ€A hip: Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€a hip Model (Sma	ll), Ți ETQc	ן ₁ 1 0.784 ³
96	Highâ€Throughput Drug Screening: A Microfabricated Sandwiching Assay for Nanoliter and Highâ€Throughput Biomarker Screening (Small 15/2019). Small, 2019, 15, 1970078.	5.2	1
97	Microfabricated gels for tissue engineering. , 0, , 317-331.		0
98	Angiogenesis: Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing (Small 25/2020). Small, 2020, 16, 2070142.	5.2	0
99	Organâ€onâ€aâ€Chip: A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy (Small 15/2021). Small, 2021, 17, 2170070.	5.2	0