
You-Ping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/824717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rubber–pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension. Composites Science and Technology, 2005, 65, 1195-1202.	7.8	202
2	Structure of carboxylated acrylonitrile-butadiene rubber (CNBR)-clay nanocomposites by co-coagulating rubber latex and clay aqueous suspension. Journal of Applied Polymer Science, 2001, 82, 2842-2848.	2.6	117
3	Constructing a Multiple Covalent Interface and Isolating a Dispersed Structure in Silica/Rubber Nanocomposites with Excellent Dynamic Performance. ACS Applied Materials & Interfaces, 2018, 10, 19922-19931.	8.0	74
4	Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile. Nano Energy, 2016, 28, 87-96.	16.0	72
5	Fracture and fatigue of silica/carbon black/natural rubber composites. Polymer Testing, 2014, 38, 40-45.	4.8	67
6	Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Advances, 2015, 5, 17140-17148.	3.6	63
7	Influence of filler type on wet skid resistance of SSBR/BR composites: Effects from roughness and micro-hardness of rubber surface. Applied Surface Science, 2011, 257, 2058-2065.	6.1	62
8	Prediction of the fatigue life of natural rubber composites by artificial neural network approaches. Materials & Design, 2014, 57, 180-185.	5.1	61
9	Structure and Properties of Silicone Rubber/Styrene–Butadiene Rubber Blends with in Situ Interface Coupling by Thiol-ene Click Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 1471-1477.	3.7	43
10	High Glass-Transition Temperature Acrylate Polymers Derived from Biomasses, Syringaldehyde, and Vanillin. Macromolecular Chemistry and Physics, 2016, 217, 2402-2408.	2.2	42
11	Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent. ACS Applied Materials & Interfaces, 2016, 8, 2753-2763.	8.0	41
12	High Performance Natural Rubber Composites with Well-Organized Interconnected Graphene Networks for Strain-Sensing Application. Industrial & Engineering Chemistry Research, 2016, 55, 4919-4929.	3.7	40
13	A Combined Experimental and Molecular Simulation Study of Factors Influencing the Selection of Antioxidants in Butadiene Rubber. Journal of Physical Chemistry B, 2017, 121, 1413-1425.	2.6	39
14	Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	34
15	Recent advances, challenges and perspectives in enantioselective release. Journal of Controlled Release, 2020, 324, 156-171.	9.9	31
16	Highly conductive natural rubber–graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application. Journal of Materials Science, 2016, 51, 10561-10573.	3.7	28
17	Biobased Magnetic Microspheres Containing Aldehyde Groups: Constructed by Vanillin-Derived Polymethacrylate/Fe ₃ O ₄ and Recycled in Adsorbing Amine. ACS Sustainable Chemistry and Engineering, 2017, 5, 658-666.	6.7	27
18	Designing polymer nanocomposites with a semi-interpenetrating or interpenetrating network structure: toward enhanced mechanical properties. Physical Chemistry Chemical Physics, 2017, 19, 15808-15820.	2.8	27

You-Ping Wu

#	Article	IF	CITATIONS
19	Materials Established for Enantioselective Release of Chiral Compounds. Industrial & Engineering Chemistry Research, 2016, 55, 6037-6048.	3.7	24
20	Adjusting silica/rubber interfacial interactions and properties via the click reactions between liquid polybutadiene and silane. Composites Science and Technology, 2021, 213, 108903.	7.8	24
21	Poly(<i>N</i> , <i>N</i> -dimethylacrylamide-octadecyl acrylate)-clay hydrogels with high mechanical properties and shape memory ability. RSC Advances, 2018, 8, 16773-16780.	3.6	22
22	Chiral, pH-sensitive polyacrylamide hydrogels: Preparation and enantio-differentiating release ability. Polymer, 2015, 68, 246-252.	3.8	20
23	Tuning the visco-elasticity of elastomeric polymer materials via flexible nanoparticles: insights from molecular dynamics simulation. RSC Advances, 2016, 6, 28666-28678.	3.6	18
24	Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation. Nanotechnology, 2016, 27, 265704.	2.6	16
25	REACTIONS OF SILICA–SILANE RUBBER AND PROPERTIES OF SILANE–SILICA/SOLUTION-POLYMERIZED STYRENE–BUTADIENE RUBBER COMPOSITE. Rubber Chemistry and Technology, 2016, 89, 526-539.	1.2	16
26	Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations. Soft Matter, 2018, 14, 1219-1226.	2.7	16
27	Biobased, Porous Poly(high internal phase emulsions): Prepared from Biomass-Derived Vanillin and Laurinol and Applied as an Oil Adsorbent. Industrial & Engineering Chemistry Research, 2019, 58, 5533-5542.	3.7	16
28	INFLUENCE OF STRAIN AMPLIFICATION NEAR CRACK TIP ON THE FRACTURE RESISTANCE OF CARBON BLACK–FILLED SBR. Rubber Chemistry and Technology, 2015, 88, 276-288.	1.2	15
29	Effects of hybrid filler networks of carbon nanotubes and carbon black on fracture resistance of styreneâ€butadiene rubber composites. Polymer Engineering and Science, 2016, 56, 1425-1431.	3.1	15
30	Chiral, thermal-responsive hydrogels containing helical hydrophilic polyacetylene: preparation and enantio-differentiating release ability. Polymer Chemistry, 2019, 10, 1780-1786.	3.9	14
31	Relationship between dynamic fatigue crack propagation properties and viscoelasticity of natural rubber/silicone rubber composites. RSC Advances, 2019, 9, 29813-29820.	3.6	14
32	Chiral pHâ€Responsive Amphiphilic Polymer Coâ€networks: Preparation, Chiral Recognition, and Release Abilities. Macromolecular Chemistry and Physics, 2013, 214, 1375-1383.	2.2	13
33	Tailoring silica–rubber interactions by interface modifiers with multiple functional groups. RSC Advances, 2017, 7, 38915-38922.	3.6	12
34	Polylactide-Based Chiral Porous Monolithic Materials Prepared Using the High Internal Phase Emulsion Template Method for Enantioselective Release. ACS Biomaterials Science and Engineering, 2019, 5, 5072-5081.	5.2	12
35	The aging properties and phase morphology of silica filled silicone rubber/butadiene rubber composites. RSC Advances, 2020, 10, 20272-20278.	3.6	12
36	Effect of chain structure on the glass transition temperature and viscoelastic property of cisâ€1,4â€polybutadiene via molecular simulation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1005-1016.	2.1	11

You-Ping Wu

#	Article	IF	CITATIONS
37	Molecular Dynamics Simulation Study of Polymer Nanocomposites with Controllable Dispersion of Spherical Nanoparticles. Journal of Physical Chemistry B, 2017, 121, 10146-10156.	2.6	11
38	Chiral, crosslinked, and micron-sized spheres of substituted polyacetylene prepared by precipitation polymerization. Polymer, 2018, 139, 76-85.	3.8	11
39	Chiral, pH responsive hydrogels constructed by <i>N</i> -Acryloyl-alanine and PEGDA/ <i>α</i> -CD inclusion complex: preparation and chiral release ability. Polymers for Advanced Technologies, 2016, 27, 169-177.	3.2	10
40	EFFECTS OF SILANE COUPLING AGENTS ON STRUCTURE AND PROPERTIES OF SILICA-FILLED SILICONE RUBBER/STYRENE BUTADIENE RUBBER COMPOSITES. Rubber Chemistry and Technology, 2018, 91, 453-468.	1.2	10
41	Chiral helical substituted polyacetylene grafted on hollow polymer particles: preparation and enantioselective adsorption towards cinchona alkaloids. Polymer Chemistry, 2019, 10, 4441-4448.	3.9	10
42	COMPARISON OF STRUCTURE AND PROPERTIES OF TWO STYRENE–BUTADIENE RUBBERS FILLED WITH CARBON BLACK, CARBON–SILICA DUAL-PHASE FILLER, AND SILICA. Rubber Chemistry and Technology, 2013, 86, 664-678.	1.2	9
43	Enhanced Interfacial Compatibility and Dynamic Fatigue Crack Propagation Behavior of Natural Rubber/Silicone Rubber Composites. Industrial & Engineering Chemistry Research, 2020, 59, 15624-15633.	3.7	9
44	Hydrophobic association hydrogels based on N-acryloyl-alanine and stearyl acrylate using gelatin as emulsifier. RSC Advances, 2016, 6, 38957-38963.	3.6	7
45	Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization. Soft Matter, 2016, 12, 9738-9748.	2.7	7
46	Aggregation-Induced Emissive Silicone Elastomer with Multiple Stimuli Responsiveness. ACS Applied Polymer Materials, 2022, 4, 4264-4273.	4.4	7
47	Rectorite powder modified by butadieneâ€styreneâ€vinyl pyridine rubber: Structure and its dispersion in styreneâ€butadiene rubber. Journal of Applied Polymer Science, 2013, 127, 765-771.	2.6	6
48	Biomassâ€Derived Acetylenic Polymer Monoliths Prepared by High Internal Phase Emulsion Template Method and Used for Adsorbing Cationic Pollutants. Macromolecular Chemistry and Physics, 2021, 222, 2000448.	2.2	4
49	High-Performance Silicone Rubber Composites via Non-Covalent Functionalization of Carbon Nanotubes. Journal of Macromolecular Science - Physics, 2017, 56, 790-799.	1.0	3
50	Traceability of VOCs in tire inner liner by chromatography-mass spectrometry. Environmental Science and Pollution Research, 2022, 29, 9685-9692.	5.3	3
51	Network transformations of highly dispersed MMT/SBR nanocomposites during processing. Journal of Applied Polymer Science, 2013, 130, 113-119.	2.6	2
52	Properties Prediction and Design of Tire Tread Composites Using Machine Learning. Macromolecular Theory and Simulations, 2020, 29, 1900063.	1.4	2