Daniel D Buchanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246655/publications.pdf Version: 2024-02-01

		14614	22102
247	15,729	66	113
papers	citations	h-index	g-index
273	273	273	18404
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Informed choice and attitudes regarding a genomic test to predict risk of colorectal cancer in general practice. Patient Education and Counseling, 2022, 105, 987-995.	1.0	7
2	Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with <i>Fusobacterium nucleatum</i> and Its Subspecies <i>animalis</i> . Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 210-220.	1.1	19
3	Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival. Scientific Reports, 2022, 12, 127.	1.6	6
4	Genetic variants associated with circulating Câ€reactive protein levels and colorectal cancer survival: Sexâ€specific and lifestyle factors specific associations. International Journal of Cancer, 2022, 150, 1447-1454.	2.3	2
5	Impact of microsatellite status in early-onset colonic cancer. British Journal of Surgery, 2022, 109, 632-636.	0.1	7
6	Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study. ELife, 2022, 11, .	2.8	19
7	Aspirin and the Risk of Colorectal Cancer According to Genetic Susceptibility among Older Individuals. Cancer Prevention Research, 2022, 15, 447-454.	0.7	5
8	Diabetes mellitus in relation to colorectal tumor molecular subtypes ―a pooled analysis of more than 9,000 cases. International Journal of Cancer, 2022, , .	2.3	2
9	Mismatch repair and clinical response to immune checkpoint inhibitors in endometrial cancer. Cancer, 2022, 128, 1157-1161.	2.0	10
10	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	1.1	6
11	Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. American Journal of Human Genetics, 2022, 109, 953-960.	2.6	23
12	Genetic Regulation of DNA Methylation Yields Novel Discoveries in GWAS of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1068-1076.	1.1	1
13	OUP accepted manuscript. Journal of the National Cancer Institute, 2022, , .	3.0	0
14	Cancer Risk C (CR-C), a functional genomics test is a sensitive and rapid test for germline mismatch repair deficiency. Genetics in Medicine, 2022, 24, 1821-1830.	1.1	2
15	Does genetic predisposition modify the effect of lifestyle-related factors on DNA methylation?. Epigenetics, 2022, 17, 1838-1847.	1.3	2
16	Association between germline variants and somatic mutations in colorectal cancer. Scientific Reports, 2022, 12, .	1.6	1
17	Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures. Nature Communications, 2022, 13, .	5.8	15
18	Heterogeneity in the psychosocial and behavioral responses associated with a diagnosis of suspected Lynch syndrome in women with endometrial cancer. Hereditary Cancer in Clinical Practice, 2022, 20, .	0.6	3

#	Article	IF	CITATIONS
19	Cross-Cancer Genome-Wide Association Study of Endometrial Cancer and Epithelial Ovarian Cancer Identifies Genetic Risk Regions Associated with Risk of Both Cancers. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 217-228.	1.1	12
20	Mendelian randomization analyses suggest a role for cholesterol in the development of endometrial cancer. International Journal of Cancer, 2021, 148, 307-319.	2.3	35
21	An integrated mass spectrometry imaging and digital pathology workflow for objective detection of colorectal tumours by unique atomic signatures. Chemical Science, 2021, 12, 10321-10333.	3.7	7
22	Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut, 2021, 70, 2138-2149.	6.1	27
23	Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut, 2021, 70, 1325-1334.	6.1	44
24	Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 895-903.	1.1	3
25	Germline and Tumor Sequencing as a Diagnostic Tool To Resolve Suspected Lynch Syndrome. Journal of Molecular Diagnostics, 2021, 23, 358-371.	1.2	12
26	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	2.6	5
27	Assessment of a Polygenic Risk Score for Colorectal Cancer to Predict Risk of Lynch Syndrome Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab022.	1.4	15
28	Epigenetic Drift Association with Cancer Risk and Survival, and Modification by Sex. Cancers, 2021, 13, 1881.	1.7	9
29	Associations between Genetically Predicted Circulating Protein Concentrations and Endometrial Cancer Risk. Cancers, 2021, 13, 2088.	1.7	10
30	DNA Methylation Signatures and the Contribution of Age-Associated Methylomic Drift to Carcinogenesis in Early-Onset Colorectal Cancer. Cancers, 2021, 13, 2589.	1.7	18
31	Genetically Predicted Circulating C-Reactive Protein Concentration and Colorectal Cancer Survival: A Mendelian Randomization Consortium Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1349-1358.	1.1	6
32	Association between Smoking and Molecular Subtypes of Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab056.	1.4	8
33	No Difference in Penetrance between Truncating and Missense/Aberrant Splicing Pathogenic Variants in MLH1 and MSH2: A Prospective Lynch Syndrome Database Study. Journal of Clinical Medicine, 2021, 10, 2856.	1.0	11
34	Genetic analyses of gynecological disease identify genetic relationships between uterine fibroids and endometrial cancer, and a novel endometrial cancer genetic risk region at the WNT4 1p36.12 locus. Human Genetics, 2021, 140, 1353-1365.	1.8	18
35	Tetranucleotide and Low Microsatellite Instability Are Inversely Associated with the CpG Island Methylator Phenotype in Colorectal Cancer. Cancers, 2021, 13, 3529.	1.7	3
36	Variation in the risk of colorectal cancer in families with Lynch syndrome: a retrospective cohort study. Lancet Oncology, The, 2021, 22, 1014-1022.	5.1	58

#	Article	IF	CITATIONS
37	Characteristics of Early-Onset vs Late-Onset Colorectal Cancer. JAMA Surgery, 2021, 156, 865.	2.2	110
38	DNA methylation-based signature of CD8+ tumor-infiltrating lymphocytes enables evaluation of immune response and prognosis in colorectal cancer. , 2021, 9, e002671.		37
39	Biological Aging Measures Based on Blood DNA Methylation and Risk of Cancer: A Prospective Study. JNCI Cancer Spectrum, 2021, 5, pkaa109.	1.4	40
40	A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 564-575.	1.1	10
41	"Left in limbo†Exploring how patients with colorectal cancer interpret and respond to a suspected Lynch syndrome diagnosis. Hereditary Cancer in Clinical Practice, 2021, 19, 43.	0.6	3
42	Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients, 2021, 13, 4164.	1.7	3
43	Rare germline variants in the AXIN2 gene in families with colonic polyposis and colorectal cancer. Familial Cancer, 2021, , 1.	0.9	5
44	A genome-wide search for determinants of survival in 1926 patients with advanced colorectal cancer with follow-up in over 22,000 patients. European Journal of Cancer, 2021, 159, 247-258.	1.3	6
45	Association of FOXO3 Blood DNA Methylation with Cancer Risk, Cancer Survival, and Mortality. Cells, 2021, 10, 3384.	1.8	6
46	Overall lack of replication of associations between dietary intake of folate and vitamin B-12 and DNA methylation in peripheral blood. American Journal of Clinical Nutrition, 2020, 111, 228-230.	2.2	6
47	Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk. Clinical Epigenetics, 2020, 12, 5.	1.8	47
48	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	0.6	110
49	Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology, 2020, 158, 1300-1312.e20.	0.6	90
50	Postmenopausal Hormone Therapy and Colorectal Cancer Risk by Molecularly Defined Subtypes and Tumor Location. JNCI Cancer Spectrum, 2020, 4, pkaa042.	1.4	8
51	Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nature Communications, 2020, 11, 3644.	5.8	55
52	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	2.6	124
53	Stochastic Epigenetic Mutations Are Associated with Risk of Breast Cancer, Lung Cancer, and Mature B-cell Neoplasms. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2026-2037.	1.1	18
54	A Genomic Test for Colorectal Cancer Risk: Is This Acceptable and Feasible in Primary Care?. Public Health Genomics, 2020, 23, 110-121.	0.6	12

#	Article	IF	CITATIONS
55	Monoallelic NTHL1 Loss-of-Function Variants and Risk of Polyposis and Colorectal Cancer. Gastroenterology, 2020, 159, 2241-2243.e6.	0.6	20
56	Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Research, 2020, 80, 4578-4590.	0.4	26
57	Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Medicine, 2020, 18, 396.	2.3	76
58	Functional informed genomeâ€wide interaction analysis of body mass index, diabetes and colorectal cancer risk. Cancer Medicine, 2020, 9, 3563-3573.	1.3	7
59	Medically actionable pathogenic variants in a population of 13,131 healthy elderly individuals. Genetics in Medicine, 2020, 22, 1883-1886.	1.1	20
60	The MLH1 polymorphism rs1800734 and risk of endometrial cancer with microsatellite instability. Clinical Epigenetics, 2020, 12, 102.	1.8	8
61	Association Between Molecular Subtypes of Colorectal Tumors and Patient Survival, Based on Pooled Analysis of 7 International Studies. Gastroenterology, 2020, 158, 2158-2168.e4.	0.6	34
62	Systematic meta-analyses, field synopsis and global assessment of the evidence of genetic association studies in colorectal cancer. Gut, 2020, 69, 1460-1471.	6.1	27
63	Potential impact of family history–based screening guidelines on the detection of earlyâ€onset colorectal cancer. Cancer, 2020, 126, 3013-3020.	2.0	45
64	Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nature Communications, 2020, 11, 597.	5.8	193
65	Genetic Variants in the Regulatory T cell–Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2719-2728.	1.1	1
66	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	3.0	129
67	Hi-Plex2: a simple and robust approach to targeted sequencing-based genetic screening. BioTechniques, 2019, 67, 118-122.	0.8	11
68	Type 2 diabetes mellitus, blood cholesterol, triglyceride and colorectal cancer risk in Lynch syndrome. British Journal of Cancer, 2019, 121, 869-876.	2.9	10
69	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
70	Phenotypic confirmation of oligodontia, colorectal polyposis and cancer in a family carrying an exon 7 nonsense variant in the AXIN2 gene. Familial Cancer, 2019, 18, 311-315.	0.9	20
71	Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history. Familial Cancer, 2019, 18, 389-397.	0.9	23
72	Tumor mutational signatures in sebaceous skin lesions from individuals with Lynch syndrome. Molecular Genetics & Genomic Medicine, 2019, 7, e00781.	0.6	8

#	Article	IF	CITATIONS
73	Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications, 2019, 10, 2154.	5.8	172
74	Circulating 25-Hydroxyvitamin D Concentration and Risk of Breast, Prostate, and Colorectal Cancers: The Melbourne Collaborative Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 900-908.	1.1	22
75	Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype. Cancer Cell, 2019, 35, 256-266.e5.	7.7	123
76	Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. Human Genetics, 2019, 138, 307-326.	1.8	44
77	Mendelian randomization analysis of C-reactive protein on colorectal cancer risk. International Journal of Epidemiology, 2019, 48, 767-780.	0.9	35
78	Risks of Colorectal Cancer and Cancer-Related Mortality in Familial Colorectal Cancer Type X and Lynch Syndrome Families. Journal of the National Cancer Institute, 2019, 111, 675-683.	3.0	12
79	Clinicoâ€pathological predictors of mismatch repair deficiency in sebaceous neoplasia: A large case series from a single Australian private pathology service. Australasian Journal of Dermatology, 2019, 60, 126-133.	0.4	13
80	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	9.4	377
81	Assessing the ProMCol classifier as a prognostic marker for non-metastatic colorectal cancer within the Melbourne Collaborative Cohort Study. Gut, 2019, 68, 761-762.	6.1	2
82	Cohort Profile: The Colon Cancer Family Registry Cohort (CCFRC). International Journal of Epidemiology, 2018, 47, 387-388i.	0.9	40
83	Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology, 2018, 154, 2152-2164.e19.	0.6	226
84	Costs and outcomes of Lynch syndrome screening in the Australian colorectal cancer population. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 1737-1744.	1.4	11
85	Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. Clinical Colorectal Cancer, 2018, 17, e293-e305.	1.0	55
86	DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis. Scientific Reports, 2018, 8, 1767.	1.6	11
87	Novel associations between blood DNA methylation and body mass index in middle-aged and older adults. International Journal of Obesity, 2018, 42, 887-896.	1.6	52
88	Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Familial Cancer, 2018, 17, 91-100.	0.9	21
89	Genomeâ€wide association study and metaâ€analysis in Northern European populations replicate multiple colorectal cancer risk loci. International Journal of Cancer, 2018, 142, 540-546.	2.3	26
90	Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality. American Journal of Epidemiology, 2018, 187, 529-538.	1.6	106

#	Article	IF	CITATIONS
91	Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype. International Journal of Cancer, 2018, 142, 238-250.	2.3	83
92	DNA methylationâ€based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. International Journal of Cancer, 2018, 142, 1611-1619.	2.3	153
93	Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1. Genetics in Medicine, 2018, 20, 890-895.	1.1	49
94	Cancer Risks for <i>PMS2</i> -Associated Lynch Syndrome. Journal of Clinical Oncology, 2018, 36, 2961-2968.	0.8	147
95	Risk and prognostic factors for endometrial carcinoma after diagnosis of breast or Lynchâ€associated cancers—A populationâ€based analysis. Cancer Medicine, 2018, 7, 6411-6422.	1.3	9
96	The prognostic impact of consensus molecular subtypes (CMS) and its predictive effects for bevacizumab benefit in metastatic colorectal cancer: molecular analysis of the AGITG MAX clinical trial. Annals of Oncology, 2018, 29, 2240-2246.	0.6	113
97	Current mismatch repair deficiency tumor testing practices and capabilities: A survey of Australian pathology providers. Asia-Pacific Journal of Clinical Oncology, 2018, 14, 417-425.	0.7	11
98	Mendelian randomisation study of age at menarche and age at menopause and the risk of colorectal cancer. British Journal of Cancer, 2018, 118, 1639-1647.	2.9	16
99	Endometrial cancer risk and survival by tumor MMR status. Journal of Gynecologic Oncology, 2018, 29, e39.	1.0	34
100	Utility of immunohistochemistry for mismatch repair proteins on colorectal polyps in the familial cancer clinic. Internal Medicine Journal, 2018, 48, 1325-1330.	0.5	2
101	Family history–based colorectal cancer screening in Australia: A modelling study of the costs, benefits, and harms of different participation scenarios. PLoS Medicine, 2018, 15, e1002630.	3.9	6
102	Identification of nine new susceptibility loci for endometrial cancer. Nature Communications, 2018, 9, 3166.	5.8	178
103	Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. American Journal of Clinical Nutrition, 2018, 108, 611-621.	2.2	35
104	Physical activity and the risk of colorectal cancer in Lynch syndrome. International Journal of Cancer, 2018, 143, 2250-2260.	2.3	23
105	DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome. Modern Pathology, 2018, 31, 1608-1618.	2.9	32
106	RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers. Familial Cancer, 2018, 17, 63-69.	0.9	16
107	Tumor testing to identify lynch syndrome in two Australian colorectal cancer cohorts. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 427-438.	1.4	47
108	Modeling of Successive Cancer Risks in Lynch Syndrome Families in the Presence of Competing Risks Using Copulas. Biometrics, 2017, 73, 271-282.	0.8	5

#	Article	IF	CITATIONS
109	Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer. International Journal of Cancer, 2017, 140, 2701-2708.	2.3	76
110	Prediction of overall survival in stage II and III colon cancer beyond TNM system: a retrospective, pooled biomarker study. Annals of Oncology, 2017, 28, 1023-1031.	0.6	174
111	Lack of evidence for germline <i>RNF43</i> mutations in patients with serrated polyposis syndrome from a large multinational study. Gut, 2017, 66, 1170-1172.	6.1	42
112	Lifetime alcohol intake is associated with an increased risk of <i>KRAS</i> + and <i>BRAF</i> ″ <i>KRAS</i> ―but not <i>BRAF+</i> colorectal cancer. International Journal of Cancer, 2017, 140, 1485-1493.	2.3	27
113	Risk factors for metachronous colorectal cancer or polyp: A systematic review and metaâ€analysis. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 301-326.	1.4	13
114	Family history of cancer predicts endometrial cancer risk independently of Lynch Syndrome: Implications for genetic counselling. Gynecologic Oncology, 2017, 147, 381-387.	0.6	30
115	Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. European Journal of Cancer, 2017, 84, 228-238.	1.3	81
116	Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Molecular Genetics & Genomic Medicine, 2017, 5, 553-569.	0.6	32
117	Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 366-375.	1.1	37
118	Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 404-412.	1.1	341
119	Germline miRNA DNA variants and the risk of colorectal cancer by subtype. Genes Chromosomes and Cancer, 2017, 56, 177-184.	1.5	7
120	Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort. Oncotarget, 2017, 8, 93450-93463.	0.8	23
121	Reducing the polyp burden in serrated polyposis by serial colonoscopy: the impact of nationally coordinated community surveillance. New Zealand Medical Journal, 2017, 130, 57-67.	0.5	4
122	Risk factors for metachronous colorectal cancer following a primary colorectal cancer: A prospective cohort study. International Journal of Cancer, 2016, 139, 1081-1090.	2.3	32
123	Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer. British Journal of Cancer, 2016, 115, 266-272.	2.9	57
124	Cholecystectomy and the risk of colorectal cancer by tumor mismatch repair deficiency status. International Journal of Colorectal Disease, 2016, 31, 1451-1457.	1.0	6
125	Multivitamin, calcium and folic acid supplements and the risk of colorectal cancer in Lynch syndrome. International Journal of Epidemiology, 2016, 45, 940-953.	0.9	27
126	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.4	100

#	Article	IF	CITATIONS
127	Promoter methylation of ITF2, but not APC, is associated with microsatellite instability in two populations of colorectal cancer patients. BMC Cancer, 2016, 16, 113.	1.1	7
128	SNP rs16906252C>T Is an Expression and Methylation Quantitative Trait Locus Associated with an Increased Risk of Developing <i>MGMT</i> -Methylated Colorectal Cancer. Clinical Cancer Research, 2016, 22, 6266-6277.	3.2	22
129	Risk of extracolonic cancers for people with biallelic and monoallelic mutations in <i>MUTYH</i> . International Journal of Cancer, 2016, 139, 1557-1563.	2.3	107
130	Determining the familial risk distribution of colorectal cancer: a data mining approach. Familial Cancer, 2016, 15, 241-251.	0.9	6
131	Variation at 2q35 (<i>PNKD</i> and <i>TMBIM1</i>) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Human Molecular Genetics, 2016, 25, 2349-2359.	1.4	37
132	Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening. Future Oncology, 2016, 12, 503-513.	1.1	42
133	Germline mutations in <i>PMS2</i> and <i>MLH1</i> in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort. BMJ Open, 2016, 6, e010293.	0.8	33
134	GWASeq: targeted re-sequencing follow up to GWAS. BMC Genomics, 2016, 17, 176.	1.2	7
135	Comparison of Prediction Models for Lynch Syndrome Among Individuals With Colorectal Cancer. Journal of the National Cancer Institute, 2016, 108, .	3.0	29
136	Clinicopathologic Risk Factor Distributions for <i>MLH1</i> Promoter Region Methylation in CIMP-Positive Tumors. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 68-75.	1.1	21
137	Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry. PLoS ONE, 2016, 11, e0165436.	1.1	12
138	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	1.6	35
139	Lynch syndrome and cervical cancer. International Journal of Cancer, 2015, 137, 2757-2761.	2.3	13
140	Do serrated neoplasms of the small intestine represent a distinct entity? Pathological findings and molecular alterations in a series of 13 cases. Histopathology, 2015, 66, 333-342.	1.6	21
141	Prediagnostic Physical Activity and Colorectal Cancer Survival: Overall and Stratified by Tumor Characteristics. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1130-1137.	1.1	30
142	Association between Body Mass Index and Mortality for Colorectal Cancer Survivors: Overall and by Tumor Molecular Phenotype. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1229-1238.	1.1	44
143	Association of the Colorectal CpG Island Methylator Phenotype with Molecular Features, Risk Factors, and Family History. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 512-519.	1.1	71
144	Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene. Familial Cancer, 2015, 14, 575-583.	0.9	11

#	Article	IF	CITATIONS
145	Aspirin, Ibuprofen, and the Risk of Colorectal Cancer in Lynch Syndrome. Journal of the National Cancer Institute, 2015, 107, djv170.	3.0	80
146	GermlineTP53Mutations in Patients With Early-Onset Colorectal Cancer in the Colon Cancer Family Registry. JAMA Oncology, 2015, 1, 214.	3.4	87
147	A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Scientific Reports, 2015, 5, 10442.	1.6	109
148	Female Hormonal Factors and the Risk of Endometrial Cancer in Lynch Syndrome. JAMA - Journal of the American Medical Association, 2015, 314, 61.	3.8	68
149	Childhood cancers in families with and without Lynch syndrome. Familial Cancer, 2015, 14, 545-551.	0.9	8
150	Association Between Molecular Subtypes of Colorectal Cancer and Patient Survival. Gastroenterology, 2015, 148, 77-87.e2.	0.6	342
151	Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives. Gut, 2015, 64, 101-110.	6.1	40
152	Consequences of germline variation disrupting the constitutional translational initiation codon start sites of <i>MLH1</i> and <i>BRCA2</i> : Use of potential alternative start sites and implications for predicting variant pathogenicity. Molecular Carcinogenesis, 2015, 54, 513-522.	1.3	14
153	Genetic variants within the hTERT gene and the risk of colorectal cancer in Lynch syndrome. Genes and Cancer, 2015, 6, 445-451.	0.6	6
154	Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome). The Application of Clinical Genetics, 2014, 7, 183.	1.4	68
155	A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. Carcinogenesis, 2014, 35, 2512-2519.	1.3	30
156	High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Familial Cancer, 2014, 13, 573-582.	0.9	44
157	Reply to J. Moline et al. Journal of Clinical Oncology, 2014, 32, 2278-2279.	0.8	5
158	Re: Microsatellite Instability and BRAF Mutation Testing in Colorectal Cancer Prognostication. Journal of the National Cancer Institute, 2014, 106, dju180-dju180.	3.0	6
159	The Association of Telomere Length with Colorectal Cancer Differs by the Age of Cancer Onset. Clinical and Translational Gastroenterology, 2014, 5, e52.	1.3	23
160	The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner. Journal of Biological Chemistry, 2014, 289, 25306-25316.	1.6	53
161	Risk of Colorectal Cancer for Carriers of Mutations in MUTYH, WithÂand Without a Family History of Cancer. Gastroenterology, 2014, 146, 1208-1211.e5.	0.6	180
162	Pooled analysis of iron-related genes in Parkinson's disease: Association with transferrin. Neurobiology of Disease, 2014, 62, 172-178.	2.1	74

#	Article	IF	CITATIONS
163	Tumour <i>MLH1</i> promoter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC). Journal of Medical Genetics, 2014, 51, 789-796.	1.5	69
164	Tumor Mismatch Repair Immunohistochemistry and DNA <i>MLH1</i> Methylation Testing of Patients With Endometrial Cancer Diagnosed at Age Younger Than 60 Years Optimizes Triage for Population-Level Germline Mismatch Repair Gene Mutation Testing. Journal of Clinical Oncology, 2014, 32, 90-100.	0.8	195
165	Should the grading of colorectal adenocarcinoma include microsatellite instability status?. Human Pathology, 2014, 45, 2077-2084.	1.1	44
166	Association between hypermethylation of DNA repetitive elements in white blood cell DNA and pancreatic cancer. Cancer Epidemiology, 2014, 38, 576-582.	0.8	18
167	Characterisation of Familial Colorectal Cancer Type X, Lynch syndrome, and non-familial colorectal cancer. British Journal of Cancer, 2014, 111, 598-602.	2.9	38
168	Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Human Molecular Genetics, 2014, 23, 4729-4737.	1.4	128
169	Colorectal Cancer Cell Lines Are Representative Models of the Main Molecular Subtypes of Primary Cancer. Cancer Research, 2014, 74, 3238-3247.	0.4	317
170	Molecular subtypes of colorectal cancer in relation to disease survival Journal of Clinical Oncology, 2014, 32, 451-451.	0.8	0
171	Lynch syndrome-associated breast cancers do not overexpress chromosome 11-encoded mucins. Modern Pathology, 2013, 26, 944-954.	2.9	1
172	Improving identification of lynch syndrome patients: A comparison of research data with clinical records. International Journal of Cancer, 2013, 132, 2876-2883.	2.3	26
173	Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers?. European Journal of Cancer, 2013, 49, 1578-1587.	1.3	31
174	Identification of Novel Variants in Colorectal Cancer Families by High-Throughput Exome Sequencing. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1239-1251.	1.1	37
175	Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Modern Pathology, 2013, 26, 1642-1656.	2.9	127
176	Risks of Colorectal and Other Cancers After Endometrial Cancer for Women With Lynch Syndrome. Journal of the National Cancer Institute, 2013, 105, 274-279.	3.0	93
177	A Multifactorial Likelihood Model for MMR Gene Variant Classification Incorporating Probabilities Based on Sequence Bioinformatics and Tumor Characteristics: A Report from the Colon Cancer Family Registry. Human Mutation, 2013, 34, 200-209.	1.1	81
178	Cancer Risks for <i>MLH1</i> and <i>MSH2</i> Mutation Carriers. Human Mutation, 2013, 34, 490-497.	1.1	201
179	KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. British Journal of Cancer, 2013, 108, 1757-1764.	2.9	191
180	Risk of Metachronous Colon Cancer Following Surgery for Rectal Cancer in Mismatch Repair Gene Mutation Carriers. Annals of Surgical Oncology, 2013, 20, 1829-1836.	0.7	103

#	Article	IF	CITATIONS
181	Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Modern Pathology, 2013, 26, 825-834.	2.9	126
182	Association between hypermethylation of DNA repetitive elements in white blood cell DNA and early-onset colorectal cancer. Epigenetics, 2013, 8, 748-755.	1.3	41
183	Germline HOXB13 p.Gly84Glu mutation and risk of colorectal cancer. Cancer Epidemiology, 2013, 37, 424-427.	0.8	24
184	Telomere Length Varies By DNA Extraction Method: Implications for Epidemiologic Research. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2047-2054.	1.1	100
185	Detection of large scale 3′ deletions in the PMS2 gene amongst Colon-CFR participants: have we been missing anything?. Familial Cancer, 2013, 12, 563-566.	0.9	14
186	Family History of Colorectal Cancer in <i>BRAF</i> p.V600E-Mutated Colorectal Cancer Cases. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 917-926.	1.1	24
187	Immunophenotypic analysis of ovarian endometrioid adenocarcinoma: Correlation with KRAS mutation and the presence of endometriosis. Pathology, 2013, 45, 559-566.	0.3	17
188	BRAFV600E Immunohistochemistry Facilitates Universal Screening of Colorectal Cancers for Lynch Syndrome. American Journal of Surgical Pathology, 2013, 37, 1592-1602.	2.1	125
189	Absence of <i><scp>PMS2</scp></i> mutations in colonâ€ <scp>CFR</scp> participants whose colorectal cancers demonstrate unexplained loss of <scp>MLH1</scp> expression. Clinical Genetics, 2013, 83, 591-593.	1.0	8
190	Multiplicity and Molecular Heterogeneity of Colorectal Carcinomas in Individuals With Serrated Polyposis. American Journal of Surgical Pathology, 2013, 37, 434-442.	2.1	39
191	PIK3CA Activating Mutation in Colorectal Carcinoma: Associations with Molecular Features and Survival. PLoS ONE, 2013, 8, e65479.	1.1	117
192	Germline Mutations in the Polyposis-Associated Genes BMPR1A, SMAD4, PTEN, MUTYH and GREM1 Are Not Common in Individuals with Serrated Polyposis Syndrome. PLoS ONE, 2013, 8, e66705.	1.1	27
193	Body size and risk for colorectal cancers showing BRAF mutations or microsatellite instability: a pooled analysis. International Journal of Epidemiology, 2012, 41, 1060-1072.	0.9	65
194	<i>BRAF</i> Mutation Status and Survival after Colorectal Cancer Diagnosis According to Patient and Tumor Characteristics. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1792-1798.	1.1	113
195	Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry. Modern Pathology, 2012, 25, 722-730.	2.9	73
196	Cancer Risks for the Relatives of Colorectal Cancer Cases with a Methylated <i>MLH1</i> Promoter Region: Data from the Colorectal Cancer Family Registry. Cancer Prevention Research, 2012, 5, 328-335.	0.7	12
197	Colorectal and Other Cancer Risks for Carriers and Noncarriers From Families With a DNA Mismatch Repair Gene Mutation: A Prospective Cohort Study. Journal of Clinical Oncology, 2012, 30, 958-964.	0.8	286
198	Using tumour pathology to identify people at high genetic risk of breast and colorectal cancers. Pathology, 2012, 44, 89-98.	0.3	7

#	Article	IF	CITATIONS
199	Phenotype and Polyp Landscape in Serrated Polyposis Syndrome. American Journal of Surgical Pathology, 2012, 36, 876-882.	2.1	85
200	Risks of Primary Extracolonic Cancers Following Colorectal Cancer in Lynch Syndrome. Journal of the National Cancer Institute, 2012, 104, 1363-1372.	3.0	193
201	KRAS mutations in ovarian low-grade endometrioid adenocarcinoma: association with concurrent endometriosis. Human Pathology, 2012, 43, 1177-1183.	1.1	51
202	Identification of Lynch Syndrome Among Patients With Colorectal Cancer. JAMA - Journal of the American Medical Association, 2012, 308, 1555.	3.8	443
203	Cancer Risks for Relatives of Patients With Serrated Polyposis. American Journal of Gastroenterology, 2012, 107, 770-778.	0.2	80
204	Colorectal Cancer Linkage on Chromosomes 4q21, 8q13, 12q24, and 15q22. PLoS ONE, 2012, 7, e38175.	1.1	24
205	Correlation of tumour BRAF mutations and <i>MLH1</i> methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. Journal of Medical Genetics, 2012, 49, 151-157.	1.5	253
206	Genome-Wide Search for Gene-Gene Interactions in Colorectal Cancer. PLoS ONE, 2012, 7, e52535.	1.1	35
207	Promoter methylation of Wnt antagonists <i>DKK1</i> and <i>SFRP1</i> is associated with opposing tumor subtypes in two large populations of colorectal cancer patients. Carcinogenesis, 2011, 32, 741-747.	1.3	74
208	Quality Assessment and Correlation of Microsatellite Instability and Immunohistochemical Markers among Population- and Clinic-Based Colorectal Tumors. Journal of Molecular Diagnostics, 2011, 13, 271-281.	1.2	131
209	Hyperplastic polyp of the duodenum: a report of 9 cases with immunohistochemical and molecular findings. Human Pathology, 2011, 42, 1953-1959.	1.1	23
210	Promoter methylation of Wnt5a is associated with microsatellite instability and BRAF V600E mutation in two large populations of colorectal cancer patients. British Journal of Cancer, 2011, 104, 1906-1912.	2.9	33
211	Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germline mutations in DNA mismatch repair genes. British Journal of Cancer, 2011, 105, 162-169.	2.9	50
212	Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome). Familial Cancer, 2011, 10, 245-254.	0.9	19
213	Mutation deep within an intron of MSH2 causes Lynch syndrome. Familial Cancer, 2011, 10, 297-301.	0.9	43
214	Cancer risks for monoallelic <i>MUTYH</i> mutation carriers with a family history of colorectal cancer. International Journal of Cancer, 2011, 129, 2256-2262.	2.3	93
215	Determining the frequency of de novo germline mutations in DNA mismatch repair genes. Journal of Medical Genetics, 2011, 48, 530-534.	1.5	40
216	Cigarette pack labelling in 12 countries at different levels of economic development. Journal of Public Health Policy, 2011, 32, 146-164.	1.0	8

#	Article	IF	CITATIONS
217	Phenotypic diversity in patients with multiple serrated polyps: a genetics clinic study. International Journal of Colorectal Disease, 2010, 25, 703-712.	1.0	48
218	Risk Factors for Colorectal Cancer in Patients with Multiple Serrated Polyps: A Cross-Sectional Case Series from Genetics Clinics. PLoS ONE, 2010, 5, e11636.	1.1	68
219	Lynch Syndrome–Associated Breast Cancers: Clinicopathologic Characteristics of a Case Series from the Colon Cancer Family Registry. Clinical Cancer Research, 2010, 16, 2214-2224.	3.2	91
220	Confirmation of Linkage to and Localization of Familial Colon Cancer Risk Haplotype on Chromosome 9q22. Cancer Research, 2010, 70, 5409-5418.	0.4	42
221	Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers. Journal of the National Cancer Institute, 2010, 102, 193-201.	3.0	328
222	Lessons from Lynch syndrome: a tumor biology-based approach to familial colorectal cancer. Future Oncology, 2010, 6, 539-549.	1.1	5
223	Classifying <i>MLH1</i> and <i>MSH2</i> variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics. Human Mutation, 2009, 30, 757-770.	1.1	60
224	Analysis of families with Lynch syndrome complicated by advanced serrated neoplasia: the importance of pathology review and pedigree analysis. Familial Cancer, 2009, 8, 313-323.	0.9	21
225	Screening PARK genes for mutations in early-onset Parkinson's disease patients from Queensland, Australia. Parkinsonism and Related Disorders, 2009, 15, 105-109.	1.1	52
226	A Perspective on Bi-allelic MUTYH Mutations in Patients With Hyperplastic Polyposis Syndrome. Gastroenterology, 2009, 136, 2407-2408.	0.6	19
227	Ethnicity and Risk for Colorectal Cancers Showing Somatic <i>BRAF</i> V600E Mutation or CpG Island Methylator Phenotype. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 1774-1780.	1.1	96
228	A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome. Journal of Medical Genetics, 2008, 45, 340-345.	1.5	47
229	Molecular, Pathologic, and Clinical Features of Early-Onset Endometrial Cancer: Identifying Presumptive Lynch Syndrome Patients. Clinical Cancer Research, 2008, 14, 1692-1700.	3.2	91
230	Association of APOE with Parkinson disease age-at-onset in women. Neuroscience Letters, 2007, 411, 185-188.	1.0	26
231	Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?. Breast Cancer Research, 2007, 9, R82.	2.2	58
232	Stability of BAT26 in Lynch syndrome colorectal tumours. European Journal of Human Genetics, 2007, 15, 139-141.	1.4	8
233	Hyperplastic Polyposis Syndrome: Phenotypic Presentations and the Role of MBD4 and MYH. Gastroenterology, 2006, 131, 30-39.	0.6	186
234	Advanced colorectal polyps with the molecular and morphological features of serrated polyps and adenomas: concept of a 'fusion' pathway to colorectal cancer. Histopathology, 2006, 49, 121-131.	1.6	230

#	Article	IF	CITATIONS
235	CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genetics, 2006, 38, 787-793.	9.4	1,715
236	Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut, 2006, 55, 1467-1474.	6.1	131
237	GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Annals of Neurology, 2005, 58, 829-839.	2.8	191
238	Evidence for BRAF mutation and variable levels of microsatellite instability in a syndrome of familial colorectal cancer. Clinical Gastroenterology and Hepatology, 2005, 3, 254-263.	2.4	123
239	Sequence variation in the proximity of IDE may impact age at onset of both Parkinson disease and Alzheimer disease. Neurogenetics, 2004, 5, 115-119.	0.7	28
240	Tau haplotypes regulate transcription and are associated with Parkinson's disease. Annals of Neurology, 2004, 55, 329-334.	2.8	157
241	The Cys282Tyr polymorphism in the HFE gene in Australian Parkinson's disease patients. Neuroscience Letters, 2002, 327, 91-94.	1.0	57
242	Lack of association between CYP1A1 polymorphism and Parkinson's disease in a Chinese population. Journal of Neural Transmission, 2002, 109, 35-39.	1.4	14
243	The parkin gene S/N167 polymorphism in Australian Parkinson's disease patients and controls. Parkinsonism and Related Disorders, 2001, 7, 89-91.	1.1	21
244	The ACE Deletion Polymorphism Is Not Associated with Parkinson's Disease. European Neurology, 1999, 41, 103-106.	0.6	22
245	Movement Disorders, 1999, 14, 219-224.	2.2	82
246	14, 219.		3
247	Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-Tumor Phenotype Including a Predisposition to Colon and Breast Cancer. SSRN Electronic Journal, 0, , .	0.4	1