Michael J Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8245295/publications.pdf

Version: 2024-02-01

94433 79698 74 7,236 37 73 h-index citations g-index papers 83 83 83 6384 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods, 2019, 15, 50.	4.3	660
2	Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4623-4628.	7.1	617
3	Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19363-19368.	7.1	607
4	Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany, 2011, 98, 704-730.	1.7	590
5	Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8379-8384.	7.1	443
6	Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3853-3858.	7.1	382
7	Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology, 2015, 15, 150.	3.2	350
8	Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biology, 2006, 6, 17.	3.6	224
9	Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales ¹ . Annals of the Missouri Botanical Garden, 2010, 97, 584-616.	1.3	202
10	Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing. Molecular Biology and Evolution, 2015, 32, 2001-2014.	8.9	198
11	Lineageâ€specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist, 2015, 207, 1170-1180.	7.3	152
12	Resolving an Ancient, Rapid Radiation in Saxifragales. Systematic Biology, 2008, 57, 38-57.	5.6	145
13	Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK. Plant Systematics and Evolution, 2009, 277, 75-84.	0.9	138
14	Seven New Complete Plastome Sequences Reveal Rampant Independent Loss of the ndh Gene Family across Orchids and Associated Instability of the Inverted Repeat/Small Single-Copy Region Boundaries. PLoS ONE, 2015, 10, e0142215.	2.5	131
15	Exploration of Plastid Phylogenomic Conflict Yields New Insights into the Deep Relationships of Leguminosae. Systematic Biology, 2020, 69, 613-622.	5.6	131
16	Phylogeny of the Caryophyllales Sensu Lato: Revisiting Hypotheses on Pollination Biology and Perianth Differentiation in the Core Caryophyllales. International Journal of Plant Sciences, 2009, 170, 627-643.	1.3	118
17	Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Systematic Biology, 2021, 70, 219-235.	5.6	112
18	Plastid phylogenomic insights into the evolution of Caryophyllales. Molecular Phylogenetics and Evolution, 2019, 134, 74-86.	2.7	101

#	Article	IF	Citations
19	A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Applications in Plant Sciences, 2013, 1, 1200497.	2.1	99
20	Molecular evidence for the age, origin, and evolutionary history of the American desert plant genus Tiquilia (Boraginaceae). Molecular Phylogenetics and Evolution, 2006, 39, 668-687.	2.7	92
21	Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Molecular Phylogenetics and Evolution, 2016, 96, 93-101.	2.7	92
22	From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. American Journal of Botany, 2018, 105, 446-462.	1.7	87
23	Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytologist, 2018, 217, 855-870.	7.3	85
24	Phylogenetic Analysis of the Plastid Inverted Repeat for 244 Species: Insights into Deeper-Level Angiosperm Relationships from a Long, Slowly Evolving Sequence Region. International Journal of Plant Sciences, 2011, 172, 541-558.	1.3	80
25	Chloroplast DNA evidence for the roles of island colonization and extinction in <i>Tolpis</i> (Asteraceae: Lactuceae). American Journal of Botany, 2002, 89, 518-526.	1.7	71
26	Floral variation and floral genetics in basal angiosperms. American Journal of Botany, 2009, 96, 110-128.	1.7	68
27	Another Look at the Root of the Angiosperms Reveals a Familiar Tale. Systematic Biology, 2014, 63, 368-382.	5. 6	68
28	Phylogenetic signal detection from an ancient rapid radiation: Effects of noise reduction, long-branch attraction, and model selection in crown clade Apocynaceae. Molecular Phylogenetics and Evolution, 2014, 80, 169-185.	2.7	63
29	Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. American Journal of Botany, 2017, 104, 858-867.	1.7	62
30	Evolution of Portulacineae Marked by Gene Tree Conflict and Gene Family Expansion Associated with Adaptation to Harsh Environments. Molecular Biology and Evolution, 2019, 36, 112-126.	8.9	55
31	Chloroplast phylogeography of the East Asian Arctoâ€Tertiary relict <i>Tetracentron sinense</i> (Trochodendraceae). Journal of Biogeography, 2014, 41, 1721-1732.	3.0	54
32	Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Molecular Phylogenetics and Evolution, 2020, 142, 106641.	2.7	52
33	Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family. BMC Genomics, 2017, 18, 592.	2.8	51
34	Disparity, diversity, and duplications in the Caryophyllales. New Phytologist, 2018, 217, 836-854.	7.3	51
35	Evolution of <scp> </scp> â€ <scp>DOPA</scp> 4,5â€dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales. New Phytologist, 2020, 227, 914-929.	7.3	48
36	Complete Plastid Genome Sequencing of Trochodendraceae Reveals a Significant Expansion of the Inverted Repeat and Suggests a Paleogene Divergence between the Two Extant Species. PLoS ONE, 2013, 8, e60429.	2.5	48

#	Article	IF	CITATIONS
37	Patterns of longâ€distance dispersal in <i>Tiquilia</i> subg. <i>Tiquilia</i> (Boraginaceae): implications for the origins of amphitropical disjuncts and Galápagos Islands endemics. American Journal of Botany, 2006, 93, 1163-1177.	1.7	47
38	Origins and Biogeography of Gypsophily in the Chihuahuan Desert Plant Group & lt; > Tiquilia& t; l> subg. & lt; > Eddya& t; l> (Boraginaceae). Systematic Botany, 2007, 32, 392-414.	0.5	43
39	A Long PCR–Based Approach for DNA Enrichment Prior to Next-Generation Sequencing for Systematic Studies. Applications in Plant Sciences, 2014, 2, 1300063.	2.1	42
40	Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. Molecular Phylogenetics and Evolution, 2018, 121, 198-211.	2.7	42
41	A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. Journal of Systematics and Evolution, 2021, 59, 897-914.	3.1	41
42	Plastome phylogenomics of Saussurea (Asteraceae: Cardueae). BMC Plant Biology, 2019, 19, 290.	3.6	34
43	Plastome characteristics of Cannabaceae. Plant Diversity, 2018, 40, 127-137.	3.7	31
44	Plastome phylogenomics of the early-diverging eudicot family Berberidaceae. Molecular Phylogenetics and Evolution, 2018, 128, 203-211.	2.7	29
45	Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Gene, 2021, 765, 145103.	2.2	27
46	Assembling the Angiosperm Tree of Life: Progress and Future Prospects. Annals of the Missouri Botanical Garden, 2010, 97, 514-526.	1.3	25
47	Phylogenetic study of the tribe Potentilleae (Rosaceae), with further insight into the disintegration of <i>Sibbaldia</i> . Journal of Systematics and Evolution, 2017, 55, 177-191.	3.1	25
48	Tropical Asian Origin, boreotropical migration and long-distance dispersal in Nettles (Urticeae,) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 30
49	Molecular Markers and Concepts of Plant Evolutionary Relationships: Progress, Promise, and Future Prospects. Critical Reviews in Plant Sciences, 2009, 28, 1-15.	5.7	23
50	Genome Sequencing of the Endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) Reveals Potential Mechanisms of Evolutionary Specialization. IScience, 2020, 23, 101124.	4.1	23
51	Phylogenetic patterns suggest frequent multiple origins of secondary metabolites across the seed-plant †tree of life'. National Science Review, 2021, 8, nwaa105.	9.5	22
52	An efficient field and laboratory workflow for plant phylotranscriptomic projects. Applications in Plant Sciences, 2017, 5, 1600128.	2.1	21
53	The first complete plastome sequence of the basal asterid family Styracaceae (Ericales) reveals a large inversion. Plant Systematics and Evolution, 2017, 303, 61-70.	0.9	18
54	Development and Application of Transcriptome-Derived Microsatellites in Actinidia eriantha (Actinidiaceae). Frontiers in Plant Science, 2017, 8, 1383.	3.6	18

#	Article	IF	Citations
55	Plastome phylogenomic insights into the Sinoâ€Japanese biogeography of <i>Diabelia</i> (Caprifoliaceae). Journal of Systematics and Evolution, 2020, 58, 972-987.	3.1	18
56	Gypsum and Plant Species: A Marvel of Cuatro Ciénegas and the Chihuahuan Desert. Cuatro CieÌnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 129-165.	0.4	18
57	Phylogenetic patterns of foliar mineral nutrient accumulation among gypsophiles and their relatives in the Chihuahuan Desert. American Journal of Botany, 2017, 104, 1442-1450.	1.7	17
58	Using and navigating the plant tree of life. American Journal of Botany, 2018, 105, 287-290.	1.7	17
59	Phylogeography of Parasyncalathium souliei (Asteraceae) and Its Potential Application in Delimiting Phylogeoregions in the Qinghai-Tibet Plateau (QTP)-Hengduan Mountains (HDM) Hotspot. Frontiers in Genetics, 2018, 9, 171.	2.3	16
60	Complete plastome sequencing from <i>Toona</i> (Meliaceae) and phylogenomic analyses within Sapindales. Applications in Plant Sciences, 2018, 6, e1040.	2.1	13
61	Complete plastome sequence of <i>Erythropalum scandens</i> (Erythropalaceae), an edible and medicinally important liana in China. Mitochondrial DNA Part B: Resources, 2018, 3, 139-140.	0.4	12
62	Diversity, distribution, development, and evolution of medullary bundles in Nyctaginaceae. American Journal of Botany, 2020, 107, 707-725.	1.7	7
63	A new species of Argentina (Rosaceae, Potentilleae) from Southeast Tibet, with reference to the taxonomic status of the genus. Plant Systematics and Evolution, 2015, 301, 911-921.	0.9	6
64	The Implications of Incongruence between Gene Tree and Species Tree Topologies for Divergence Time Estimation. Systematic Biology, 2022, 71, 1124-1146.	5.6	6
65	Target Enrichment and Extensive Population Sampling Help Untangle the Recent, Rapid Radiation of <i>Oenothera</i> Sect. <i>Calylophus</i> Systematic Biology, 2023, 72, 249-263.	5.6	6
66	Microsatellites for <i>Oenothera gayleana</i> and <i>O. hartwegii</i> subsp. <i>filifolia</i> (Onagraceae), and their utility in section <i>Calylophus</i> Applications in Plant Sciences, 2016, 4, 1500107.	2.1	4
67	Assembly and comparative analyses of the mitochondrial genome of Castanospermum australe (Papilionoideae, Leguminosae). Australian Systematic Botany, 2019, 32, 484-494.	0.9	4
68	High phylogeographic and genetic diversity ofTidestromia lanuginosasupports fullâ€glacial refugia for aridâ€adapted plants in southern and central Coahuila, Mexico. American Journal of Botany, 2020, 107, 1296-1308.	1.7	4
69	Complete plastome sequences of two Neottia species and comparative analysis with other Neottieae species (Orchidaceae). Folia Geobotanica, 2019, 54, 257-266.	0.9	3
70	Phylogeography of a gypsum endemic plant across its entire distribution range in the western Mediterranean. American Journal of Botany, 2021, 108, 443-460.	1.7	3
71	Anatomical diversity and evolution of the anthocarp in Nyctaginaceae. Botanical Journal of the Linnean Society, 2021, 196, 21-52.	1.6	3
72	A new and unusual endemic species from the Chihuahuan Desert, Mexico: Antiphytum geoffreyi (Boraginaceae, Echiochiloideae). Phytotaxa, 2018, 367, 275.	0.3	2

ARTICLE IF CITATIONS

Molecular and Morphological Evidence Reveals a New Species of <i>Antiphytum </i>
Taxonomy and Phylogeny of Helenium scaposum (Asteraceae, Helenieae, Gaillardinae).. Lundellia, 2020, 23, .