Han Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8245150/publications.pdf

Version: 2024-02-01

		687363	888059
19	691	13	17
papers	citations	h-index	g-index
20	20	20	1341
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1. Nature Cell Biology, 2022, 24, 74-87.	10.3	22
2	Interactome Analysis of Human Phospholipase D and Phosphatidic Acid-Associated Protein Network. Molecular and Cellular Proteomics, 2022, 21, 100195.	3.8	13
3	Functional interplay between the Hippo pathway and heavy metals. Molecular and Cellular Oncology, 2022, 9, 2061297.	0.7	O
4	Elucidation of <scp>WW</scp> domain ligand binding specificities in the Hippo pathway reveals <scp>STXBP</scp> 4 as <scp>YAP</scp> inhibitor. EMBO Journal, 2020, 39, e102406.	7.8	23
5	MAP4K Interactome Reveals STRN4 as a Key STRIPAK Complex Component in Hippo Pathway Regulation. Cell Reports, 2020, 32, 107860.	6.4	34
6	Systematic analysis of the Hippo pathway organization and oncogenic alteration in evolution. Scientific Reports, 2020, 10, 3173.	3.3	13
7	Phosphatidic acid: a lipid regulator of the Hippo pathway. Molecular and Cellular Oncology, 2019, 6, 1558683.	0.7	2
8	Regulation of in vivo dynein force production by CDK5 and 14-3-3 $\hat{l}\mu$ and KIAA0528. Nature Communications, 2019, 10, 228.	12.8	19
9	Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Molecular Cell, 2018, 72, 328-340.e8.	9.7	74
10	Hippo signaling dysfunction induces cancer cell addiction to YAP. Oncogene, 2018, 37, 6414-6424.	5.9	31
11	Angiomotin-like 2 interacts with and negatively regulates AKT. Oncogene, 2017, 36, 4662-4669.	5.9	10
12	Lnc <scp>RNA</scp> wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO Journal, 2017, 36, 3325-3335.	7.8	139
13	Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Reports, 2017, 20, 737-749.	6.4	69
14	MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death and Disease, 2017, 8, e2916-e2916.	6.3	49
15	microRNA-129-5p, a c-Myc negative target, affects hepatocellular carcinoma progression by blocking the Warburg effect. Journal of Molecular Cell Biology, 2016, 8, 400-410.	3.3	47
16	microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13. Oncotarget, 2016, 7, 16409-16419.	1.8	25
17	Aurora kinase A mediates câ€Myc's oncogenic effects in hepatocellular carcinoma. Molecular Carcinogenesis, 2015, 54, 1467-1479.	2.7	38
18	A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology, 2013, 57, 2378-2389.	7.3	80

#	Article	IF	CITATIONS
19	Foxh1 engages in chromatin regulation revealed by protein interactome analyses. Development Growth and Differentiation, 0, , .	1.5	1