
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8244575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of repeated remote ischemic postconditioning after an ischemic stroke (REPOST): A randomized controlled trial. International Journal of Stroke, 2023, 18, 296-303.	5.9	9
2	Longitudinal Relation Between Structural Network Efficiency, Cognition, and Gait in Cerebral Small Vessel Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 554-560.	3.6	11
3	Risk of Dementia and Structural Brain Changes Following Nonneurological Infections During 9-Year Follow-Up*. Critical Care Medicine, 2022, 50, 554-564.	0.9	15
4	Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 14-23.	1.9	15
5	Association of cerebral small vessel disease burden with brain structure and cognitive and vascular risk trajectories in mid-to-late life. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 600-612.	4.3	9
6	Impact of the lockdown on acute stroke treatments during the first surge of the COVID-19 outbreak in the Netherlands. BMC Neurology, 2022, 22, 22.	1.8	5
7	Endovascular Thrombectomy in Young Patients With Stroke: A MR CLEAN Registry Study. Stroke, 2022, 53, 34-42.	2.0	17
8	Metabolomic profiling in small vessel disease identifies multiple associations with disease severity. Brain, 2022, 145, 2461-2471.	7.6	12
9	Global Differences in Risk Factors, Etiology, and Outcome of Ischemic Stroke in Young Adults—A Worldwide Meta-analysis. Neurology, 2022, 98, .	1.1	28
10	Systematic validation of structural brain networks in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1020-1032.	4.3	9
11	Neuroimaging Parameters Are Not Associated With Chronic Post-stroke Fatigue in Young Stroke Patients. Frontiers in Neurology, 2022, 13, 831357.	2.4	2
12	Determinants and Temporal Dynamics of Cerebral Small Vessel Disease: 14-Year Follow-Up. Stroke, 2022, 53, 2789-2798.	2.0	17
13	The Hyperintense study: Assessing the effects of induced blood pressure increase and decrease on MRI markers of cerebral small vessel disease: Study rationale and protocol. European Stroke Journal, 2022, 7, 331-338.	5.5	2
14	Multi-shell Diffusion MRI Models for White Matter Characterization in Cerebral Small Vessel Disease. Neurology, 2021, 96, e698-e708.	1.1	33
15	Post-Stroke Working Memory Dysfunction: A Meta-Analysis and Systematic Review. Neuropsychology Review, 2021, 31, 202-219.	4.9	36
16	White matter hyperintensities at critical crossroads for executive function and verbal abilities in small vessel disease. Human Brain Mapping, 2021, 42, 993-1002.	3.6	18
17	Cognition mediates the relation between structural network efficiency and gait in small vessel disease. NeuroImage: Clinical, 2021, 30, 102667.	2.7	17
18	Relation between physical activity and cerebral small vessel disease: A nine-year prospective cohort study. International Journal of Stroke, 2021, 16, 962-971.	5.9	8

#	Article	IF	CITATIONS
19	Development of imaging-based risk scores for prediction of intracranial haemorrhage and ischaemic stroke in patients taking antithrombotic therapy after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2021, 20, 294-303.	10.2	37
20	ESO Guideline on covert cerebral small vessel disease. European Stroke Journal, 2021, 6, CXI-CLXII.	5.5	68
21	Pro-inflammatory Monocyte Phenotype During Acute Progression of Cerebral Small Vessel Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 639361.	2.4	8
22	Long-term mortality in young patients with spontaneous intracerebral haemorrhage: Predictors and causes of death. European Stroke Journal, 2021, 6, 185-193.	5.5	4
23	Diffusion-weighted imaging lesions and risk of recurrent stroke after intracerebral haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 950-955.	1.9	9
24	ESO Guideline on covert cerebral small vessel disease. European Stroke Journal, 2021, 6, IV-IV.	5.5	14
25	Assessing cortical cerebral microinfarcts on iron-sensitive MRI in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3391-3399.	4.3	4
26	Ambient air pollution and the risk of ischaemic and haemorrhagic stroke. Lancet Planetary Health, The, 2021, 5, e542-e552.	11.4	75
27	Differences in cerebral small vessel disease magnetic resonance imaging markers between lacunar stroke and non–Lobar intracerebral hemorrhage. European Stroke Journal, 2021, 6, 239698732110317.	5.5	3
28	Structural network changes in cerebral small vessel disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 196-203.	1.9	28
29	Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 231-245.	4.3	49
30	Apathy, but not depression, predicts all-cause dementia in cerebral small vessel disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 953-959.	1.9	24
31	Location-specific risk factors for intracerebral hemorrhage. Neurology, 2020, 95, e1807-e1818.	1.1	41
32	Higher Incidence of Ischemic Stroke in Young Women Than in Young Men. Stroke, 2020, 51, 3195-3196.	2.0	8
33	Network neuroscience of apathy in cerebrovascular disease. Progress in Neurobiology, 2020, 188, 101785.	5.7	27
34	Simple MRI score aids prediction of dementia in cerebral small vessel disease. Neurology, 2020, 94, e1294-e1302.	1.1	67
35	Structural network efficiency predicts cognitive decline in cerebral small vessel disease. NeuroImage: Clinical, 2020, 27, 102325.	2.7	17
36	Histopathology of diffusion-weighted imaging-positive lesions in cerebral amyloid angiopathy. Acta Neuropathologica, 2020, 139, 799-812.	7.7	21

#	Article	IF	CITATIONS
37	Vascular reserve in brain resilience: pipes or perfusion?. Brain, 2020, 143, 390-392.	7.6	2
38	Temporal Dynamics of Cortical Microinfarcts in Cerebral Small Vessel Disease. JAMA Neurology, 2020, 77, 643.	9.0	16
39	Alterations and test–retest reliability of functional connectivity network measures in cerebral small vessel disease. Human Brain Mapping, 2020, 41, 2629-2641.	3.6	19
40	Serum Neurofilament Light Chain Is Associated with Incident Lacunes in Progressive Cerebral Small Vessel Disease. Journal of Stroke, 2020, 22, 369-376.	3.2	27
41	The contribution of acute infarcts to cerebral small vessel disease progression. Annals of Neurology, 2019, 86, 582-592.	5.3	27
42	Multicentre Randomised trial of Acute Stroke treatment in the Ambulance with a nitroglycerin Patch (MR ASAP): study protocol for a randomised controlled trial. Trials, 2019, 20, 383.	1.6	20
43	Use of Statins After Ischemic Stroke in Young Adults and Its Association With Long-Term Outcome. Stroke, 2019, 50, 3385-3392.	2.0	26
44	Longitudinal changes in rich club organization and cognition in cerebral small vessel disease. NeuroImage: Clinical, 2019, 24, 102048.	2.7	16
45	The role of small diffusion-weighted imaging lesions in cerebral small vessel disease. Neurology, 2019, 93, 10.1212/WNL.000000000008364.	1.1	14
46	CT perfusion hypervolemia: brain ischemia or stroke mimic?. Neuroradiology, 2019, 61, 361-363.	2.2	2
47	Remote Ischemic Conditioning as an Additional Treatment for Acute Ischemic Stroke. Stroke, 2019, 50, 1934-1939.	2.0	40
48	Association of Stroke Among Adults Aged 18 to 49 Years With Long-term Mortality. JAMA - Journal of the American Medical Association, 2019, 321, 2113.	7.4	48
49	Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2019, 18, 653-665.	10.2	143
50	Stroke incidence in young adults according to age, subtype, sex, and time trends. Neurology, 2019, 92, e2444-e2454.	1.1	132
51	Thalamus: a key player in alcohol use disorder and Korsakoff's syndrome. Brain, 2019, 142, 1170-1172.	7.6	9
52	Cognitive consequences of regression of cerebral small vessel disease. European Stroke Journal, 2019, 4, 85-89.	5.5	12
53	The effect of repeated remote ischemic postconditioning on infarct size in patients with an ischemic stroke (REPOST): study protocol for a randomized clinical trial. Trials, 2019, 20, 167.	1.6	14
54	Apathy is associated with large-scale white matter network disruption in small vessel disease. Neurology, 2019, 92, e1157-e1167.	1.1	40

#	Article	IF	CITATIONS
55	Global Outcome Assessment Life-long after stroke in young adults initiative—the GOAL initiative: study protocol and rationale of a multicentre retrospective individual patient data meta-analysis. BMJ Open, 2019, 9, e031144.	1.9	7
56	Adiposity is related to cerebrovascular and brain volumetry outcomes in the RUN DMC study. Neurology, 2019, 93, e864-e878.	1.1	33
57	Value-based healthcare in ischemic stroke care: case-mix adjustment models for clinical and patient-reported outcomes. BMC Medical Research Methodology, 2019, 19, 229.	3.1	17
58	Use of antihypertensive medication after ischemic stroke in young adults and its association with long-term outcome. Annals of Medicine, 2019, 51, 68-77.	3.8	12
59	Brain atrophy and strategic lesion location increases risk of parkinsonism in cerebral small vessel disease. Parkinsonism and Related Disorders, 2019, 61, 94-100.	2.2	2
60	Memory decline in elderly with cerebral small vessel disease explained by temporal interactions between white matter hyperintensities and hippocampal atrophy. Hippocampus, 2019, 29, 500-510.	1.9	28
61	Increased Risk of Pregnancy Complications After Stroke. Stroke, 2018, 49, 877-883.	2.0	22
62	Prothrombotic factors do not increase the risk of recurrent ischemic events after cryptogenic stroke at young age: the FUTURE study. Journal of Thrombosis and Thrombolysis, 2018, 45, 504-511.	2.1	11
63	Predicting the presence of macrovascular causes in non-traumatic intracerebral haemorrhage: the DIAGRAM prediction score. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 674-679.	1.9	46
64	Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition. European Journal of Radiology, 2018, 98, 200-206.	2.6	7
65	An updated diagnostic approach to subtype definition of vascular parkinsonism – Recommendations from an expert working group. Parkinsonism and Related Disorders, 2018, 49, 9-16.	2.2	55
66	Circle of Willis Collateral Flow in Carotid Artery Occlusion Is Depicted by 4D-CTA. World Neurosurgery, 2018, 114, 421-426.e1.	1.3	4
67	Plasma Aβ (Amyloid-β) Levels and Severity and Progression of Small Vessel Disease. Stroke, 2018, 49, 884-890.	2.0	27
68	Free water determines diffusion alterations and clinical status in cerebral small vessel disease. Alzheimer's and Dementia, 2018, 14, 764-774.	0.8	108
69	Risk factors and mechanisms of stroke in young adults: The FUTURE study. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1631-1641.	4.3	61
70	Pregnancy and ischemic stroke: a practical guide to management. Current Opinion in Neurology, 2018, 31, 44-51.	3.6	42
71	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	4.3	48
72	Risk of Nursing Home Admission in Cerebral Small Vessel Disease. Stroke, 2018, 49, 2659-2665.	2.0	3

#	Article	IF	CITATIONS
73	The Dutch Acute Stroke Audit: Benchmarking acute stroke care in the Netherlands. European Stroke Journal, 2018, 3, 361-368.	5.5	42
74	Cerebral small vessel disease: from a focal to a global perspective. Nature Reviews Neurology, 2018, 14, 387-398.	10.1	310
75	Investigating the origin and evolution of cerebral small vessel disease: The RUN DMC – InTENse study. European Stroke Journal, 2018, 3, 369-378.	5.5	14
76	Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurology, The, 2018, 17, 790-801.	10.2	239
77	Serum Neurofilament Light Chain Levels Are Related to Small Vessel Disease Burden. Journal of Stroke, 2018, 20, 228-238.	3.2	82
78	Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage: Clinical, 2017, 14, 391-399.	2.7	99
79	Disease progression and regression in sporadic small vessel disease–insights from neuroimaging. Clinical Science, 2017, 131, 1191-1206.	4.3	40
80	Disruption of rich club organisation in cerebral small vessel disease. Human Brain Mapping, 2017, 38, 1751-1766.	3.6	64
81	Nonlinear temporal dynamics of cerebral small vessel disease. Neurology, 2017, 89, 1569-1577.	1.1	89
82	Searching for Explanations for Cryptogenic Stroke in the Young: Revealing the Triggers, Causes, and Outcome (SECRETO): Rationale and design. European Stroke Journal, 2017, 2, 116-125.	5.5	30
83	Waxing and waning of white matter hyperintensities. Neurology, 2017, 89, 984-985.	1.1	1
84	Robust Segmentation of the Full Cerebral Vasculature in 4D CT of Suspected Stroke Patients. Scientific Reports, 2017, 7, 15622.	3.3	38
85	Executive Function Declines in the First 6 Months After a Transient Ischemic Attack or Transient Neurological Attack. Stroke, 2017, 48, 3323-3328.	2.0	13
86	Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Scientific Reports, 2017, 7, 5110.	3.3	171
87	[P4–394]: ASSOCIATIONS OF PLASMA AMYLOID BETA LEVELS WITH SEVERITY AND PROGRESSION OF CEREBRAL SMALL VESSEL DISEASE. Alzheimer's and Dementia, 2017, 13, P1479.	0.8	0
88	Subjective Cognitive Impairment, Depressive Symptoms, and Fatigue after a TIA or Transient Neurological Attack: A Prospective Study. Behavioural Neurology, 2017, 2017, 1-7.	2.1	10
89	The very long-term risk and predictors of recurrent ischaemic events after a stroke at a young age: The FUTURE study. European Stroke Journal, 2016, 1, 337-345.	5.5	8
90	Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease. Medical Physics, 2016, 43, 6246-6258.	3.0	59

#	Article	IF	CITATIONS
91	Women have a poorer very long-term functional outcome after stroke among adults aged 18–50Âyears: the FUTURE study. Journal of Neurology, 2016, 263, 1099-1105.	3.6	27
92	White Matter Microstructural Damage on Diffusion Tensor Imaging in Cerebral Small Vessel Disease. Stroke, 2016, 47, 1679-1684.	2.0	80
93	A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 2016, 80, 581-592.	5.3	250
94	Structural network connectivity and cognition in cerebral small vessel disease. Human Brain Mapping, 2016, 37, 300-310.	3.6	122
95	Accelerated development of cerebral small vessel disease in young stroke patients. Neurology, 2016, 87, 1212-1219.	1.1	25
96	Late-onset depressive symptoms increase the risk of dementia in small vessel disease. Neurology, 2016, 87, 1102-1109.	1.1	13
97	Remote Lower White Matter Integrity Increases the Risk of Long-Term Cognitive Impairment After Ischemic Stroke in Young Adults. Stroke, 2016, 47, 2517-2525.	2.0	35
98	Structural network efficiency predicts conversion to dementia. Neurology, 2016, 86, 1112-1119.	1.1	103
99	Factors Associated With 8-Year Mortality in Older Patients With Cerebral Small Vessel Disease. JAMA Neurology, 2016, 73, 402.	9.0	43
100	White Matter and Hippocampal Volume Predict the Risk of Dementia in Patients withÂCerebral Small Vessel Disease: TheÂRUN DMC Study. Journal of Alzheimer's Disease, 2015, 49, 863-873.	2.6	40
101	Ipsilateral hippocampal atrophy is associated with longâ€ŧerm memory dysfunction after ischemic stroke in young adults. Human Brain Mapping, 2015, 36, 2432-2442.	3.6	49
102	Diffusionâ€weighted imaging in transient neurological attacks. Annals of Neurology, 2015, 78, 1005-1010.	5.3	42
103	Relationship Between White Matter Hyperintensities, Cortical Thickness, and Cognition. Stroke, 2015, 46, 425-432.	2.0	147
104	Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study. BMJ, The, 2015, 351, h5762-h5762.	6.0	71
105	Cardiovascular Disease Is the Main Cause of Long-Term Excess Mortality After Ischemic Stroke in Young Adults. Hypertension, 2015, 65, 670-675.	2.7	26
106	White Matter Integrity and Depressive Symptoms in Cerebral Small Vessel Disease: The RUN DMC Study. American Journal of Geriatric Psychiatry, 2015, 23, 525-535.	1.2	46
107	Cohort study ON Neuroimaging, Etiology and Cognitive consequences of Transient neurological attacks (CONNECT): study rationale and protocol. BMC Neurology, 2015, 15, 36.	1.8	7
108	Cerebral small vessel disease and incident parkinsonism. Neurology, 2015, 85, 1569-1577.	1.1	85

#	Article	IF	CITATIONS
109	Poststroke Epilepsy Is Associated With a High Mortality After a Stroke at Young Age. Stroke, 2015, 46, 2309-2311.	2.0	55
110	Cognitive performance and poor long-term functional outcome after young stroke. Neurology, 2015, 85, 776-782.	1.1	29
111	Quality of Life after Young Ischemic Stroke of Mild Severity Is Mainly Influenced by Psychological Factors. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 2183-2188.	1.6	36
112	White matter integrity in small vessel disease is related to cognition. NeuroImage: Clinical, 2015, 7, 518-524.	2.7	143
113	Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nature Genetics, 2015, 47, 78-83.	21.4	195
114	Post-stroke fatigue and its association with poor functional outcome after stroke in young adults. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1120-1126.	1.9	71
115	Lower Ipsilateral Hippocampal Integrity after Ischemic Stroke in Young Adults: A Long-Term Follow-Up Study. PLoS ONE, 2015, 10, e0139772.	2.5	16
116	High Incidence of Diabetes after Stroke in Young Adults and Risk of Recurrent Vascular Events: The FUTURE Study. PLoS ONE, 2014, 9, e87171.	2.5	15
117	Long-term increased risk of unemployment after young stroke. Neurology, 2014, 83, 1132-1138.	1.1	65
118	Letter by Rutten-Jacobs and de Leeuw Regarding Article, "Long-Term Mortality After First-Ever and Recurrent Stroke in Young Adults― Stroke, 2014, 45, e301.	2.0	0
119	Ischaemic stroke in young adults: risk factors and long-term consequences. Nature Reviews Neurology, 2014, 10, 315-325.	10.1	257
120	Observational Dutch Young Symptomatic StrokE studY (ODYSSEY): study rationale and protocol of a multicentre prospective cohort study. BMC Neurology, 2014, 14, 55.	1.8	13
121	Persistent Cognitive Impairment After Transient Ischemic Attack. Stroke, 2014, 45, 2270-2274.	2.0	73
122	Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology, The, 2013, 12, 822-838.	10.2	3,919
123	Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol. BMC Neurology, 2011, 11, 29.	1.8	154
124	White Matter Lesions Are Associated With Progression of Medial Temporal Lobe Atrophy in Alzheimer Disease. Stroke, 2006, 37, 2248-2252.	2.0	50
125	Prevalence, risk factors, and long-term outcomes of cerebral ischemia in hospitalized COVID-19 patients – study rationale and protocol of the CORONIS study: A multicentre prospective cohort study. European Stroke Journal, 0, , 239698732210925.	5.5	2