Masakatsu Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8244324/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction Physics of the Fast Ignitor Concept. Physical Review Letters, 1996, 77, 2483-2486.	7.8	270
2	Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography. Physics of Plasmas, 2008, 15, .	1.9	126
3	Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Applied Physics Letters, 2009, 94, .	3.3	116
4	Activation of Wnt/l²-catenin signalling pathway induces chemoresistance to interferon-l̂±/5-fluorouracil combination therapy for hepatocellular carcinoma. British Journal of Cancer, 2009, 100, 1647-1658.	6.4	107
5	Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Physics of Plasmas, 2006, 13, 012105.	1.9	106
6	Indirectly driven targets for inertial confinement fusion. Nuclear Fusion, 1991, 31, 1315-1331.	3.5	103
7	Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline. Applied Physics Letters, 2011, 98, .	3.3	100
8	High energy ions generated by laser driven Coulomb explosion of cluster. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 464, 98-102.	1.6	95
9	Intestinal CX ₃ C chemokine receptor 1 ^{high} (CX ₃ CR1) Tj ETQq1 1 0.78- of Sciences of the United States of America, 2012, 109, 5010-5015.	4314 rgBT 7.1	/Overlock 10 92
10	Experimental observation of laser-induced radiation heat waves. Physical Review Letters, 1990, 65, 587-590.	7.8	84
11	Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications. Applied Physics Letters, 2005, 87, 241503.	3.3	82
12	Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target. Physical Review Letters, 2004, 92, 195001.	7.8	74
13	Boosting laser-ion acceleration with multi-picosecond pulses. Scientific Reports, 2017, 7, 42451.	3.3	71
14	Ion energy spectrum of expanding laser-plasma with limited mass. Physics of Plasmas, 2005, 12, 062706.	1.9	69
15	Magnetically insulated inertial fusion: A new approach to controlled thermonuclear fusion. Physical Review Letters, 1986, 56, 139-142.	7.8	67
16	Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas. Applied Physics Letters, 2006, 89, 151501.	3.3	65
17	Radiation symmetrization in indirectly driven ICF targets. Nuclear Fusion, 1991, 31, 1333-1341.	3.5	58
18	Innovative ignition scheme for ICF—impact fast ignition. Nuclear Fusion, 2006, 46, 99-103.	3.5	56

#	Article	IF	CITATIONS
19	Fast ignition integrated experiments with Gekko and LFEX lasers. Plasma Physics and Controlled Fusion, 2011, 53, 124029.	2.1	55
20	Ultra-intense laser pulse propagation in plasmas: from classic hole-boring to incomplete hole-boring with relativistic transparency. New Journal of Physics, 2012, 14, 063026.	2.9	54
21	A new twist for inertial fusion energy: Impact ignition. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 67-75.	1.6	49
22	Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project. Nuclear Fusion, 2009, 49, 104024.	3.5	45
23	Experimental Evidence of Impact Ignition: 100-Fold Increase of Neutron Yield by Impactor Collision. Physical Review Letters, 2009, 102, 235002.	7.8	45
24	Thermal X-ray emission from ion-beam-heated matter. Journal of X-Ray Science and Technology, 1990, 2, 127-148.	1.0	44
25	Irradiation nonuniformity due to imperfections of laser beams. Journal of Applied Physics, 1993, 74, 802-808.	2.5	44
26	Equation of state and optimum compression in inertial fusion energy. Laser and Particle Beams, 2007, 25, 585-592.	1.0	44
27	Irradiation system based on dodecahedron for inertial confinement fusion. Applied Physics Letters, 1995, 66, 1587-1589.	3.3	43
28	Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas. Optica, 2017, 4, 1086.	9.3	42
29	Effect of the satellite lines and opacity on the extreme ultraviolet emission from high-density Xe plasmas. Applied Physics Letters, 2004, 85, 5857-5859.	3.3	41
30	Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. Journal of Plasma Physics, 1998, 60, 743-760.	2.1	38
31	Acceleration to high velocities and heating by impact using Nike KrF laser. Physics of Plasmas, 2010, 17, 056317.	1.9	36
32	Comparison between jet collision and shell impact concepts for fast ignition. Laser and Particle Beams, 2005, 23, .	1.0	35
33	Magnetically insulated and inertially confined fusion $\hat{a} \in \mathbb{C}$ MICF. Nuclear Fusion, 1988, 28, 369-387.	3.5	34
34	X-ray confinement in a gold cavity heated by 351-nm laser light. Physical Review A, 1991, 44, 8323-8333.	2.5	34
35	Efficient Shell Implosion and Target Design. Japanese Journal of Applied Physics, 1987, 26, 1132-1145.	1.5	33
36	Efficient generation of quasimonoenergetic ions by Coulomb explosions of optimized nanostructured clusters. Physics of Plasmas, 2009, 16, .	1.9	31

#	Article	IF	CITATIONS
37	Indirect-direct hybrid target experiments with the GEKKO XII laser. Nuclear Fusion, 2000, 40, 547-556.	3.5	30
38	Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition. Matter and Radiation at Extremes, 2018, 3, 28-39.	3.9	30
39	Generation of megatesla magnetic fields by intense-laser-driven microtube implosions. Scientific Reports, 2020, 10, 16653.	3.3	30
40	Experimental investigation of radiation heat waves driven by laser-induced Planck radiation. Physical Review A, 1992, 45, 3987-3996.	2.5	29
41	Fast ignition and related plasma physics issues with high-intensity lasers. Plasma Physics and Controlled Fusion, 1997, 39, A145-A151.	2.1	29
42	Suppression of Rayleigh–Taylor instability due to radiative ablation in brominated plastic targets. Physics of Plasmas, 2004, 11, 2814-2822.	1.9	29
43	Laser-driven quasimonoenergetic proton burst from water spray target. Physics of Plasmas, 2010, 17, .	1.9	29
44	Strong electron heating in CHS ICRF heating experiments. Nuclear Fusion, 1997, 37, 53-68.	3.5	28
45	Present status of fast ignition realization experiment and inertial fusion energy development. Nuclear Fusion, 2013, 53, 104021.	3.5	27
46	Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction. Physics of Plasmas, 2015, 22, 033302.	1.9	27
47	Dense blocks of energetic ions driven by multi-petawatt lasers. Scientific Reports, 2016, 6, 22150.	3.3	27
48	Smoothing of Nonuniformity by X-ray Radiation in Cannonball Target. Japanese Journal of Applied Physics, 1986, 25, 242-247.	1.5	26
49	On intense proton beam generation and transport in hollow cones. Matter and Radiation at Extremes, 2017, 2, 28-36.	3.9	26
50	Towards realization of hyper-velocities for impact fast ignition. Plasma Physics and Controlled Fusion, 2005, 47, B815-B822.	2.1	25
51	Insulin-like growth factor-binding protein 7 alters the sensitivity to interferon-based anticancer therapy in hepatocellular carcinoma cells. British Journal of Cancer, 2010, 102, 1483-1490.	6.4	25
52	Conversion efficiency of extreme ultraviolet radiation in laser-produced plasmas. Physics of Plasmas, 2006, 13, 033107.	1.9	22
53	Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers. High Energy Density Physics, 2012, 8, 227-230.	1.5	22
54	One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column. Plasma Physics and Controlled Fusion, 2012, 54, 055003.	2.1	22

#	Article	IF	CITATIONS
55	Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator. Applied Physics Letters, 2013, 102, .	3.3	22
56	Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in	1.9	22
57	Ion beam requirements for fast ignition of inertial fusion targets. Physics of Plasmas, 2015, 22, .	1.9	22
58	Sheath dynamics induced by ionâ€acoustic rarefaction wave. Physics of Fluids B, 1993, 5, 3441-3446.	1.7	21
59	Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array. Laser and Particle Beams, 2014, 32, 419-427.	1.0	21
60	Optimization of irradiation configuration in laser fusion utilizing self-organizing electrodynamic system. Physics of Plasmas, 2010, 17, .	1.9	20
61	Generation of orange pulse laser in waterproof fluoride glass fibre with graphene thin film. Electronics Letters, 2014, 50, 1470-1472.	1.0	20
62	Analysis of radiation symmetrization in hohlraum targets. Nuclear Fusion, 1992, 32, 1715-1724.	3.5	18
63	Scaling laws for hydrodynamically similar implosions with heat conduction. Physics of Plasmas, 2002, 9, 2745-2753.	1.9	18
64	Optimization of laser illumination configuration for directly driven inertial confinement fusion. Matter and Radiation at Extremes, 2017, 2, 55-68.	3.9	18
65	Nanocluster explosions and quasimonoenergetic spectra by homogeneously distributed impurity ions. Physics of Plasmas, 2008, 15, 082702.	1.9	17
66	Impact ignition as a track to laser fusion. Nuclear Fusion, 2014, 54, 054007.	3.5	17
67	Stability of spherical converging shock wave. Physics of Plasmas, 2015, 22, .	1.9	17
68	Recent progress in laser fusion research at Osaka University: Uniformity and stability issues*. Physics of Plasmas, 1994, 1, 1653-1661.	1.9	15
69	Interaction physics of the fast ignitor concept. Laser and Particle Beams, 1997, 15, 557-564.	1.0	15
70	Self-similar ablative flow of nonstationary accelerating foil due to nonlinear heat conduction. Physics of Plasmas, 2007, 14, 022707.	1.9	15
71	Activities on heavy ion inertial fusion and beam-driven high energy density science in Japan. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 606, 1-5.	1.6	14
72	Production of high-density high-temperature plasma by collapsing small solid-density plasma shell with two ultra-intense laser pulses. Applied Physics Letters, 2012, 100, .	3.3	13

#	Article	IF	CITATIONS
73	High energy density micro plasma bunch from multiple laser interaction with thin target. Applied Physics Letters, 2014, 104, .	3.3	13
74	Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas. Physical Review E, 2017, 96, 043209.	2.1	13
75	Laser-driven acceleration of a dense matter up to â€~thermonuclear' velocities. Plasma Physics and Controlled Fusion, 2007, 49, 1689-1706.	2.1	12
76	Advanced laser-produced EUV light source for HVM with conversion efficiency of 5-7% and B-field mitigation of ions. Proceedings of SPIE, 2008, , .	0.8	12
77	Impact-driven shock waves and thermonuclear neutron generation. Plasma Physics and Controlled Fusion, 2009, 51, 095001.	2.1	12
78	Illumination uniformity of a capsule directly driven by a laser facility with 32 or 48 directions of irradiation. Physics of Plasmas, 2010, 17, .	1.9	12
79	Guiding of intense laser pulse in uniform plasmas and preformed plasma channels. Physics of Plasmas, 2010, 17, 103109.	1.9	12
80	Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas. Physics of Plasmas, 2016, 23, .	1.9	12
81	Generation of ultrahigh field by micro-bubble implosion. Scientific Reports, 2018, 8, 7537.	3.3	12
82	Recent results and future prospects of laser fusion research at ILE, Osaka. European Physical Journal D, 2007, 44, 259-264.	1.3	11
83	Characterization of material ablation driven by laser generated intense extreme ultraviolet light. Applied Physics Letters, 2015, 107, .	3.3	11
84	Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses. Matter and Radiation at Extremes, 2019, 4, 034401.	3.9	11
85	Ion Collection by Electromagnetic Force. Japanese Journal of Applied Physics, 1993, 32, L1471-L1473.	1.5	10
86	Dynamics and stability of a stagnating hot spot. Physics of Plasmas, 1995, 2, 3466-3472.	1.9	10
87	Single-event high-compression inertial confinement fusion at low temperatures compared with two-step fast ignitor. Journal of Plasma Physics, 2003, 69, 413-429.	2.1	10
88	Studies on heavy ion fusion and high energy density physics in Japan. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 21-29.	1.6	10
89	EUV light source by high power laser. Journal of Physics: Conference Series, 2008, 112, 042047.	0.4	10
90	Laser oscillation in 5-cm Nd-doped silica fiber fabricated by zeolite method. Journal of Non-Crystalline Solids, 2011, 357, 963-965.	3.1	10

#	Article	IF	CITATIONS
91	Present states and future prospect of fast ignition realization experiment (FIREX) with Gekko and LFEX Lasers at ILE. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 84-88.	1.6	10
92	Self-consistent stability analysis of spherical shocks. Astrophysics and Space Science, 2011, 336, 195-200.	1.4	10
93	Electron-positron pair creation in the electric fields generated by micro-bubble implosions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126854.	2.1	10
94	Characterization of Extreme UV Radiation from Laser Produced Spherical Tin Plasmas for Use in Lithography. Journal of Plasma and Fusion Research, 2004, 80, 325-330.	0.4	10
95	Design of a conic irradiation system for laser fusion. Fusion Engineering and Design, 1999, 44, 111-115.	1.9	9
96	Properties of EUV and particle generations from laser-irradiated solid- and low-density tin targets. , 2005, , .		9
97	Energy spectra and charge states of debris emitted from laser-produced minimum mass tin plasmas. , 2006, 6151, 1051.		9
98	Development of laser-driven quasi-monoenergetic proton beam line for radiobiology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 189-192.	1.6	9
99	Revision of the Coulomb logarithm in the ideal plasma. Physics of Plasmas, 2014, 21, 042103.	1.9	9
100	Stability of stagnation via an expanding accretion shock wave. Physics of Plasmas, 2016, 23, .	1.9	9
101	Relativistic proton emission from ultrahigh-energy-density nanosphere generated by microbubble implosion. Physics of Plasmas, 2019, 26, .	1.9	9
102	Laser astrophysics experiment on the amplification of magnetic fields by shock-induced interfacial instabilities. Physical Review E, 2021, 104, 035206.	2.1	9
103	Strong surface magnetic field generation in relativistic short pulse laser–plasma interaction with an applied seed magnetic field. New Journal of Physics, 2020, 22, 113009.	2.9	9
104	Suppression of photoâ€darkening effect by Ca additive in Ybâ€doped silica glass fibre. Electronics Letters, 2013, 49, 148-149.	1.0	8
105	High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma. Physical Review Accelerators and Beams, 2016, 19, .	1.6	8
106	Generation of quasi-monoenergetic ions using optimized hollow nanospheres. Physics of Plasmas, 2020, 27, .	1.9	8
107	Sign reversal in magnetic field amplification by relativistic laser-driven microtube implosions. Applied Physics Letters, 2020, 117, 244101.	3.3	8
108	Absorption of 0.53 μm laser light in cannonball targets. Optics Communications, 1986, 60, 169-174.	2.1	7

#	Article	IF	CITATIONS
109	Observation of long life plasma generated in a cavity by CO ₂ lasers. Laser and Particle Beams, 1986, 4, 17-25.	1.0	7
110	Electron distribution function in an intense femtosecond laser field. Physical Review A, 1992, 46, R4512-R4515.	2.5	7
111	Suppression of the Rayleigh–Taylor instability and its implication for the impact ignition. Plasma Physics and Controlled Fusion, 2004, 46, B245-B254.	2.1	7
112	Analytical model for interaction of short intense laser pulse with solid target. Physics of Plasmas, 2011, 18, 042701.	1.9	7
113	Visible lasers in waterproof fluoro-aluminate glass fibers excited by GaN laser diodes. , 2013, , .		7
114	Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target. Physics of Plasmas, 2014, 21, .	1.9	7
115	Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets. Laser and Particle Beams, 2015, 33, 103-107.	1.0	7
116	Birefringence in thermally anisotropic relativistic plasmas and its impact on laser–plasma interactions. Physics of Plasmas, 2020, 27, .	1.9	7
117	Laser scaling for generation of megatesla magnetic fields by microtube implosions. High Power Laser Science and Engineering, 0, , 1-17.	4.6	7
118	Thermal X-Ray Emission from Ion-Beam-Heated Matter. Journal of X-Ray Science and Technology, 1990, 2, 127-148.	1.0	6
119	Critical requirements for low temperature ignition targets. Nuclear Fusion, 1997, 37, 549-555.	3.5	6
120	Selfâ€ S imilar Gravitational Collapse of Radiatively Cooling Spheres. Astrophysical Journal, 2004, 607, 879-889.	4.5	6
121	Fast ignition by detonation in a hydrodynamic flow. Journal of Russian Laser Research, 2009, 30, 279-295.	0.6	6
122	Magnetic field amplification driven by the gyro motion of charged particles. Scientific Reports, 2021, 11, 23592.	3.3	6
123	Theory of efficient shell implosions. Laser and Particle Beams, 1989, 7, 189-205.	1.0	5
124	Design of Laser Fusion Reactordriven by Laser-Diode-Pumped Solid State Laser. Fusion Science and Technology, 1992, 21, 1460-1464.	0.6	5
125	Convective instability of radiatively cooling self-similar implosions. Physics of Plasmas, 2000, 7, 2978-2986.	1.9	5

126 Estimation of emission efficiency for laser-produced EUV plasmas. , 2004, , .

5

#	Article	IF	CITATIONS
127	Trapping of electromagnetic radiation in self-generated and preformed cavities. Laser and Particle Beams, 2013, 31, 589-595.	1.0	5
128	Ignition condition and gain scaling of low temperature ignition targets. Nuclear Fusion, 1998, 38, 467-479.	3.5	4
129	Self-similar implosions and explosions of radiatively cooling gaseous masses. Physics of Plasmas, 1998, 5, 518-528.	1.9	4
130	Filamentation control and collimation of laser accelerated MeV protons. Plasma Physics and Controlled Fusion, 2015, 57, 125013.	2.1	4
131	Enhancement of fast electron energy deposition by external magnetic fields. Journal of Physics: Conference Series, 2016, 688, 012033.	0.4	4
132	Ion beam bunching via phase rotation in cascading laser-driven ion acceleration. Physics of Plasmas, 2018, 25, 083116.	1.9	4
133	100-kT magnetic field generation using paisley targets by femtosecond laser–plasma interactions. Applied Physics Letters, 2022, 120, .	3.3	4
134	Ion Acoustic Shock Wave Formation and Ion Acceleration in the Interactions of Pair Jets with Electron–ion Plasmas. Astrophysical Journal, 2022, 931, 36.	4.5	4
135	Effect of radiation on the time-resolved rear-side emission of laser-illuminated foils at 0.25 μm: Comparison with simulations. Laser and Particle Beams, 1991, 9, 541-549.	1.0	3
136	Neutron generation from impact fast ignition. Journal of Physics: Conference Series, 2008, 112, 022065.	0.4	3
137	Radiobiological study by using laser-driven proton beams. , 2009, , .		3
138	Ultrahigh acceleration of plasma blocks from direct converting laser energy into motion by nonlinear forces. , 2011, , .		3
139	Time evolution of solid-density plasma during and after irradiation by a short, intense laser pulse. Laser and Particle Beams, 2012, 30, 407-414.	1.0	3
140	Model study on laser interaction with near-critical density plasma. Applied Physics B: Lasers and Optics, 2012, 108, 875-882.	2.2	3
141	Cascaded acceleration of proton beams in ultrashort laser-irradiated microtubes. Physics of Plasmas, 2017, 24, .	1.9	3
142	Non-destructive inspection of water or high-pressure hydrogen gas in metal pipes by the flash of neutrons and x rays generated by laser. AIP Advances, 2022, 12, 045220.	1.3	3
143	Beam matter interaction physics for fast ignitors. Fusion Engineering and Design, 1999, 44, 215-224.	1.9	2
144	Temperature dependence of nonlinear optical phenomena in silica glasses. , 2010, , .		2

Masakatsu Murakami

#	Article	IF	CITATIONS
145	Compression of matter by hyperspherical shock waves. Europhysics Letters, 2012, 100, 24004.	2.0	2
146	Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers. EPJ Web of Conferences, 2013, 59, 01008.	0.3	2
147	Enhanced laser-driven proton acceleration from a relativistically transparent transversely nano-striped target. Plasma Physics and Controlled Fusion, 2015, 57, 115009.	2.1	2
148	Verifying the authorship of Saikaku Ihara's work in early modern Japanese literature; a quantitative approach. Digital Scholarship in the Humanities, 2015, 30, 599-607.	0.7	2
149	Watt-order direct green laser oscillation at 522nm in Pr3+-doped waterproof fluoro-aluminate-glass fiber. , 2013, , .		2
150	Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields. Physics of Plasmas, 2022, 29, 053104.	1.9	2
151	Optimization of Shell Implosion Driven by Black Body Radiation. Japanese Journal of Applied Physics, 1986, 25, L257-L260.	1.5	1
152	Measurement of absorption distribution by second harmonic and x-ray images. AIP Conference Proceedings, 1996, , .	0.4	1
153	Smoothing of nonuniformity in a planar ablative flow. Physics of Plasmas, 1996, 3, 2710-2716.	1.9	1
154	The Interaction Physics of the Fast Ignitor Concept. Astrophysics and Space Science, 1997, 256, 161-168.	1.4	1
155	Driver development of IFE power plant in Japan – Collaborative process with industry and industrial applications. European Physical Journal Special Topics, 2006, 133, 811-819.	0.2	1
156	Progress in LPP EUV source development at Osaka University. , 2006, , .		1
157	Non-dimensional scaling of impact fast ignition experiments. Journal of Physics: Conference Series, 2008, 112, 022071.	0.4	1
158	Nanocluster explosions and generation of quasimonoenergetic ions. , 2009, , .		1
159	Present status and future prospect of Fast Ignition Realization Experiment (FIREX) Project at ILE, Osaka. , 2010, , .		1
160	Self-Similar Hydrodynamics with Heat Conduction. , 0, , .		1
161	Planar-core optical fibre laser. Electronics Letters, 2012, 48, 642.	1.0	1
162	Suppression mechanism by Ca additive of photodarkening effect in Yb-doped silica glass fiber. , 2013, , .		1

#	Article	IF	CITATIONS
163	Monoenergetic collimated nano-Coulomb electron beams driven by crossed laser beams. Applied Physics Letters, 2013, 103, 024105.	3.3	1
164	Ion acceleration in shell cylinders irradiated by a short intense laser pulse. Physics of Plasmas, 2015, 22, 093106.	1.9	1
165	Relativistic and electromagnetic molecular dynamics simulations for a carbon–gold nanotube accelerator. Computer Physics Communications, 2019, 241, 56-63.	7.5	1
166	Relativistic-induced opacity of electron–positron plasmas. Plasma Physics and Controlled Fusion, 2021, 63, 045010.	2.1	1
167	Generation of electron $\hat{a} \in $ positron pairs by laser-ion implosion of a target with a spherical microbubble inside. Quantum Electronics, 2021, 51, 795-800.	1.0	1
168	EUV and particle generations from laser-irradiated solid-ÂandÂlow-density targets. European Physical Journal Special Topics, 2006, 133, 1189-1192.	0.2	1
169	Advanced Target Design for the FIREX-I Project. Plasma and Fusion Research, 2009, 4, S1001-S1001.	0.7	1
170	Recent results and future prospects of laser fusion research at ILE, Osaka. European Physical Journal Special Topics, 2006, 133, 27-28.	0.2	1
171	Development of EUV light source by laser-produced plasma. European Physical Journal Special Topics, 2006, 133, 1161-1165.	0.2	1
172	Microbubble implosions in finite hollow spheres. Physics of Plasmas, 2022, 29, 013105.	1.9	1
173	A Case Report of Pycnodysostosis. Orthopedics & Traumatology, 1981, 30, 192-195.	0.1	0
174	Indirect-drive inertial fusion research at the Institute of Laser Engineering. AIP Conference Proceedings, 1994, , .	0.4	0
175	Implosion dynamics of a hot core. AIP Conference Proceedings, 1996, , .	0.4	0
176	Tow-stage extraction ion diode experiments on Reiden-SHVS for light ion fusion. AIP Conference Proceedings, 1996, , .	0.4	0
177	Design of multi-beam laser irradiation system and uniformity improvement. AIP Conference Proceedings, 1996, , .	0.4	0
178	A new instability of a contact surface driven by a nonuniform shock wave. AIP Conference Proceedings, 1996, , .	0.4	0
179	The interaction physics of the fast ignitor concept. , 1997, , .		0
180	Ignition and burn dynamics of low temperature ignition D-T targets. , 1997, , .		0

Ignition and burn dynamics of low temperature ignition D-T targets. , 1997, , . 180

11

#	Article	IF	CITATIONS
181	Agreement of measured fusion gains with the self-similarity model and volume ignition for NIF conditions. , 1997, , .		0
182	<title>Convective instability of radiatively cooling self-similar implosions</title> ., 2001, , .		0
183	Progress in understanding of laser-produced plasmas for EUV source. , 0, , .		0
184	Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets. , 2004, , .		0
185	Self-similar plasma expansion of a limited mass into vacuum. European Physical Journal Special Topics, 2006, 133, 329-334.	0.2	0
186	Theoretical and Experimental Databases for High Average Power EUV Light Source by Laser Produced Plasma. AIP Conference Proceedings, 2007, , .	0.4	0
187	EUV light source by high power laser. , 2007, , .		0
188	Ion acceleration due to expansion of non-quasi-neutral plasmas into vacuum. AIP Conference Proceedings, 2007, , .	0.4	0
189	Plasma expansion into vacuum with charge separation effect. AIP Conference Proceedings, 2008, , .	0.4	0
190	Ion acceleration due to explosions of nanoparticles driven by thermal electrons. Journal of Physics: Conference Series, 2008, 112, 042074.	0.4	0
191	Peculiarities of laser-driven acceleration of a flat projectile up to â€~thermonuclear' velocities. Journal of Physics: Conference Series, 2008, 112, 022052.	0.4	0
192	Multi-Species Ion Acceleration in Expansion of Finite-Size Plasma Targets. Plasma and Fusion Research, 2008, 3, 035-035.	0.7	0
193	Experimental investigation to demonstrate Impact Fast Ignition scheme. Journal of Physics: Conference Series, 2010, 244, 022071.	0.4	0
194	Progress of impact ignition. , 2011, , .		0
195	Radiobiology with laser-accelerated quasi-monoenergetic proton beams. Proceedings of SPIE, 2011, , .	0.8	0
196	Dynamic Screening, Coulomb Singularity and Drude Model of Absorption. Contributions To Plasma Physics, 2013, 53, 360-367.	1.1	0
197	Suppression of photo-darkening by Ca additive in Yb-doped silica fiber. , 2013, , .		0
198	Visible short pulse generation in waterproof fluoro-aluminate glass fibers using graphene thin film. , 2014, , .		0

#	Article	IF	CITATIONS
199	Large-Fluence Laser-Driven Ion Beam for Inertial Fusion Ignition. , 2017, , 775-782.		0
200	Suppression of Rayleigh-Taylor Instability Using High-Z Doped Plastic Targets for Inertial Fusion Energy. Journal of Plasma and Fusion Research, 2004, 80, 597-604.	0.4	0
201	Super-Uniform Target Illumination for Laser Fusion as a Self-Organizing System. , 2010, , .		0
202	Direct visible lasers by rare earth doped waterproof fluoro-aluminate fibers. , 2011, , .		0
203	European Projects to Study Matter, Plasma, and Vacuum with Extremely Intense Laser. The Review of Laser Engineering, 2014, 42, 120.	0.0	0
204	Generation of Long Life Plasma and Strong Magnetic Field by CO2 Laser. , 1986, , 449-468.		0
205	On the International Symposium. The Review of Laser Engineering, 1998, 26, 473-475.	0.0	0
206	Mass-limited plasmas heated by laser-driven fast electrons as a powerful source of neutron and hard x-ray radiation. Plasma Physics and Controlled Fusion, 2020, 62, 125007.	2.1	0