List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/824373/publications.pdf Version: 2024-02-01

ΗΕΜΑΙ Η ΡΑΤΕΙ

#	Article	IF	CITATIONS
1	The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 2019, 364,	12.6	576
2	Interaction of membrane/lipid rafts with the cytoskeleton: Impact on signaling and function. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 532-545.	2.6	420
3	Caveolae as Organizers of Pharmacologically Relevant Signal Transduction Molecules. Annual Review of Pharmacology and Toxicology, 2008, 48, 359-391.	9.4	399
4	Microtubules and Actin Microfilaments Regulate Lipid Raft/Caveolae Localization of Adenylyl Cyclase Signaling Components. Journal of Biological Chemistry, 2006, 281, 26391-26399.	3.4	238
5	G-protein-coupled Receptor Signaling Components Localize in Both Sarcolemmal and Intracellular Caveolin-3-associated Microdomains in Adult Cardiac Myocytes. Journal of Biological Chemistry, 2005, 280, 31036-31044.	3.4	195
6	Lipid-Induced Toxicity Stimulates Hepatocytes to Release Angiogenic Microparticles That Require Vanin-1 for Uptake by Endothelial Cells. Science Signaling, 2013, 6, ra88.	3.6	177
7	Hydrogen Sulfide—Mechanisms of Toxicity and Development of an Antidote. Scientific Reports, 2016, 6, 20831.	3.3	170
8	Cardioprotection at a Distance: Mesenteric Artery Occlusion Protects the Myocardium via an Opioid Sensitive Mechanism. Journal of Molecular and Cellular Cardiology, 2002, 34, 1317-1323.	1.9	161
9	Regulation of intracellular signaling and function by caveolin. FASEB Journal, 2014, 28, 3823-3831.	0.5	157
10	Loss of Caveolin-1 Accelerates Neurodegeneration and Aging. PLoS ONE, 2010, 5, e15697.	2.5	155
11	The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6386-6391.	7.1	129
12	Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo and in vitro characterization. Life Sciences, 2007, 81, 1223-1227.	4.3	126
13	Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolinâ ϵ 1. FASEB Journal, 2007, 21, 1565-1574.	0.5	126
14	Cardiac-Specific Overexpression of Caveolin-3 Induces Endogenous Cardiac Protection by Mimicking Ischemic Preconditioning. Circulation, 2008, 118, 1979-1988.	1.6	126
15	Increased smooth muscle cell expression of caveolinâ€l and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB Journal, 2007, 21, 2970-2979.	0.5	121
16	Caveolae and Lipid Rafts: G Protein-Coupled Receptor Signaling Microdomains in Cardiac Myocytes. Annals of the New York Academy of Sciences, 2005, 1047, 166-172.	3.8	117
17	Lipid Rafts and Caveolae and Their Role in Compartmentation of Redox Signaling. Antioxidants and Redox Signaling, 2009, 11, 1357-1372.	5.4	111
18	Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2008, 44, 123-130.	1.9	101

#	Article	IF	CITATIONS
19	Caveolinâ€1 expression is essential for <i>N</i> â€methylâ€ <scp>D</scp> â€aspartate receptorâ€mediated Src an extracellular signalâ€regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. FASEB Journal, 2008, 22, 828-840.	d 0.5	101
20	Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and Î-opioid receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H344-H350.	3.2	95
21	The Zinc Finger Cluster Domain of RanBP2 Is a Specific Docking Site for the Nuclear Export Factor, Exportin-1. Journal of Biological Chemistry, 1999, 274, 37370-37378.	3.4	88
22	Mitochondriaâ€localized caveolin in adaptation to cellular stress and injury. FASEB Journal, 2012, 26, 4637-4649.	0.5	88
23	Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. American Journal of Physiology - Cell Physiology, 2017, 312, C459-C477.	4.6	88
24	Cardiac-Specific Overexpression of Caveolin-3 Attenuates Cardiac Hypertrophy and Increases Natriuretic Peptide Expression and Signaling. Journal of the American College of Cardiology, 2011, 57, 2273-2283.	2.8	86
25	Neuron-targeted Caveolin-1 Protein Enhances Signaling and Promotes Arborization of Primary Neurons. Journal of Biological Chemistry, 2011, 286, 33310-33321.	3.4	85
26	Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1184-H1192.	3.2	84
27	Focal Adhesions in (Myo)fibroblasts Scaffold Adenylyl Cyclase with Phosphorylated Caveolin. Journal of Biological Chemistry, 2006, 281, 17173-17179.	3.4	83
28	lschaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovascular Research, 2015, 106, 227-236.	3.8	74
29	BW373U86, a δ Opioid Agonist, Partially Mediates Delayed Cardioprotection via a Free Radical Mechanism that is Independent of Opioid Receptor Stimulation. Journal of Molecular and Cellular Cardiology, 2001, 33, 1455-1465.	1.9	65
30	Quantitative Proteomic and Functional Analysis of Liver Mitochondria from High Fat Diet (HFD) Diabetic Mice. Molecular and Cellular Proteomics, 2013, 12, 3744-3758.	3.8	62
31	Membrane rafts and caveolae in cardiovascular signaling. Current Opinion in Nephrology and Hypertension, 2009, 18, 50-56.	2.0	61
32	Copper influx transporter 1 is required for FGF, PDGF and EGF-induced MAPK signaling. Biochemical Pharmacology, 2012, 84, 1007-1013.	4.4	61
33	Delta opioid agonists and volatile anesthetics facilitate cardioprotection via potentiation of K ATP channel opening. FASEB Journal, 2002, 16, 1468-1470.	0.5	60
34	Volatile Anesthetics Protect Cancer Cells against Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis <i>via</i> Â Caveolins. Anesthesiology, 2011, 115, 499-508.	2.5	59
35	Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H445-H447.	3.2	58
36	Isoflurane Produces Sustained Cardiac Protection after Ischemia–Reperfusion Injury in Mice. Anesthesiology, 2006, 104, 495-502.	2.5	58

HEMAL H PATEL

#	Article	IF	CITATIONS
37	The plasma membrane as a capacitor for energy and metabolism. American Journal of Physiology - Cell Physiology, 2016, 310, C181-C192.	4.6	57
38	Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Experimental Gerontology, 2014, 50, 72-81.	2.8	52
39	Role of Caveolin-3 and Glucose Transporter-4 in Isoflurane-induced Delayed Cardiac Protection. Anesthesiology, 2010, 112, 1136-1145.	2.5	52
40	Integrins protect cardiomyocytes from ischemia/reperfusion injury. Journal of Clinical Investigation, 2013, 123, 4294-4308.	8.2	52
41	Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on δ-opioid receptor stimulation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1604-H1609.	3.2	51
42	Impairment of TRPC1–STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. Journal of Cell Science, 2013, 126, 667-675.	2.0	51
43	Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice. Biological Psychiatry, 2017, 81, 101-110.	1.3	51
44	Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes. Journal of Biological Chemistry, 2015, 290, 22085-22100.	3.4	50
45	Sarcolemmal K ATP Channel Triggers Opioid-Induced Delayed Cardioprotection in the Rat. Circulation Research, 2002, 91, 186-188.	4.5	43
46	12-Lipoxygenase in Opioid-Induced Delayed Cardioprotection. Circulation Research, 2003, 92, 676-682.	4.5	43
47	Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circulation Research, 2016, 119, 931-943.	4.5	43
48	Disruption of Protein Kinase A Localization Using a Trans-activator of Transcription (TAT)-conjugated A-kinase-anchoring Peptide Reduces Cardiac Function. Journal of Biological Chemistry, 2010, 285, 27632-27640.	3.4	40
49	Caveolins: targeting pro-survival signaling in the heart and brain. Frontiers in Physiology, 2012, 3, 393.	2.8	40
50	Increase in Cellular Cyclic AMP Concentrations Reverses the Profibrogenic Phenotype of Cardiac Myofibroblasts: A Novel Therapeutic Approach for Cardiac Fibrosis. Molecular Pharmacology, 2013, 84, 787-793.	2.3	40
51	Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution. Laboratory Investigation, 2017, 97, 256-267.	3.7	40
52	COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat. Life Sciences, 2004, 75, 129-140.	4.3	39
53	High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E764-E772.	3.5	38
54	Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection. Journal of Medicinal Chemistry, 2015, 58, 1750-1759.	6.4	38

#	Article	IF	CITATIONS
55	Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease. American Journal of Physiology - Renal Physiology, 2017, 313, F282-F290.	2.7	37
56	δ-Opioid Receptor Activation Mimics Ischemic Preconditioning in the Canine Heart. Journal of Cardiovascular Pharmacology, 2003, 42, 78-81.	1.9	36
57	Role of 12-lipoxygenase in volatile anesthetic-induced delayed preconditioning in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H979-H983.	3.2	35
58	Opioid-Induced Preconditioning Is Dependent on Caveolin-3 Expression. Anesthesia and Analgesia, 2010, 111, 1117-1121.	2.2	35
59	Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H895-H903.	3.2	34
60	Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Research, 2007, 1177, 103-123.	2.2	33
61	A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E387-96.	7.1	33
62	Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab on A Chip, 2021, 21, 904-915.	6.0	33
63	Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy. Redox Biology, 2022, 52, 102304.	9.0	32
64	Role of Caveolae in Cardiac Protection. Pediatric Cardiology, 2011, 32, 329-333.	1.3	31
65	Caveolin-1 Modulates Cardiac Gap Junction Homeostasis and Arrhythmogenecity by Regulating cSrc Tyrosine Kinase. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 701-710.	4.8	31
66	Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular <i>I</i> _{Ca} density in mouse ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1101-H1111.	3.2	31
67	Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). Hypertension, 2021, 77, 1670-1682.	2.7	31
68	Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cerebral Cortex, 2018, 28, 3255-3266.	2.9	30
69	Aortic pathology from protein kinase G activation is prevented by an antioxidant vitamin B12 analog. Nature Communications, 2019, 10, 3533.	12.8	30
70	Caveolin and caveolae in age associated cardiovascular disease. Journal of Geriatric Cardiology, 2013, 10, 66-74.	0.2	30
71	Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Molecular Nutrition and Food Research, 2013, 57, 1007-1014.	3.3	29
72	Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R160-R168.	1.8	29

HEMAL H PATEL

#	Article	IF	CITATIONS
73	Caveolins and Heart Diseases. Advances in Experimental Medicine and Biology, 2012, 729, 145-156.	1.6	28
74	Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB Journal, 2019, 33, 1209-1225.	0.5	28
75	Caveolin isoform switching as a molecular, structural, and metabolic regulator of microglia. Molecular and Cellular Neurosciences, 2013, 56, 283-297.	2.2	27
76	Caveolins in cardioprotection – translatability and mechanisms. British Journal of Pharmacology, 2015, 172, 2114-2125.	5.4	27
77	Caveolin-1 regulation of <i>disrupted-in-schizophrenia</i> -1 as a potential therapeutic target for schizophrenia. Journal of Neurophysiology, 2017, 117, 436-444.	1.8	27
78	Caveolin-3 plays a critical role in autophagy after ischemia-reperfusion. American Journal of Physiology - Cell Physiology, 2016, 311, C854-C865.	4.6	25
79	Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovascular Diabetology, 2017, 16, 155.	6.8	25
80	Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells. Journal of Biological Chemistry, 2018, 293, 4411-4421.	3.4	25
81	Long-term atorvastatin treatment leads to alterations in behavior, cognition, and hippocampal biochemistry. Behavioural Brain Research, 2014, 267, 6-11.	2.2	24
82	Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB Journal, 2015, 29, 374-384.	0.5	24
83	Neuronâ€ŧargeted caveolinâ€1 improves neuromuscular function and extends survival in SOD1 ^{G93A} mice. FASEB Journal, 2019, 33, 7545-7554.	0.5	24
84	Cardioprotective Trafficking of Caveolin to Mitochondria Is Gi-protein Dependent. Anesthesiology, 2014, 121, 538-548.	2.5	24
85	Cardiac ischemia-reperfusion injury induces ROS-dependent loss of PKA regulatory subunit Rlα. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1231-H1242.	3.2	23
86	Neuronâ€specific caveolinâ€1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB Journal, 2017, 31, 3403-3411.	0.5	22
87	Distinct pathways of cholesterol biosynthesis impact on insulin secretion. Journal of Endocrinology, 2015, 224, 75-84.	2.6	21
88	Human-like Cmah inactivation in mice increases running endurance and decreases muscle fatigability: implications for human evolution. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181656.	2.6	21
89	Inducing Mild Traumatic Brain Injury in C. elegans via Cavitation-Free Surface Acoustic Wave-Driven Ultrasonic Irradiation. Scientific Reports, 2019, 9, 12775.	3.3	20
90	Intravenous Adeno-Associated Virus Serotype 8 Encoding Urocortin-2 Provides Sustained Augmentation of Left Ventricular Function in Mice. Human Gene Therapy, 2013, 24, 777-785.	2.7	19

#	Article	IF	CITATIONS
91	Metabolomic analysis of serum and myocardium in compensated heart failure after myocardial infarction. Life Sciences, 2019, 221, 212-223.	4.3	19
92	AKIP1 Expression Modulates Mitochondrial Function in Rat Neonatal Cardiomyocytes. PLoS ONE, 2013, 8, e80815.	2.5	18
93	Helium postconditioning regulates expression of caveolin-1 and -3 and induces RISK pathway activation after ischaemia/reperfusion in cardiac tissue of rats. European Journal of Pharmacology, 2016, 791, 718-725.	3.5	17
94	The Disputed Role of COX-2 in Myocardial Infarction, Is the Jury Still Out?. Journal of Molecular and Cellular Cardiology, 2002, 34, 1-3.	1.9	16
95	Attenuation of heat shock-induced cardioprotection by treatment with the opiate receptor antagonist naloxone. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2011-H2017.	3.2	16
96	Detection of caveolin-3/caveolin-1/P2X7R complexes in mice atrial cardiomyocytes in vivo and in vitro. Histochemistry and Cell Biology, 2012, 138, 231-241.	1.7	16
97	The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 711-719.	3.6	16
98	Caveolin-1 Phosphorylation Is Essential for Axonal Growth of Human Neurons Derived From iPSCs. Frontiers in Cellular Neuroscience, 2019, 13, 324.	3.7	16
99	Electrophysiology and metabolism of caveolin-3-overexpressing mice. Basic Research in Cardiology, 2016, 111, 28.	5.9	15
100	Caveolins as Regulators of Stress Adaptation. Molecular Pharmacology, 2018, 93, 277-285.	2.3	15
101	Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria. Journal of Advanced Research, 2021, 31, 35-47.	9.5	15
102	Synapsin-Promoted Caveolin-1 Overexpression Maintains Mitochondrial Morphology and Function in PSAPP Alzheimer's Disease Mice. Cells, 2021, 10, 2487.	4.1	15
103	Cardiac-Directed Expression of Adenylyl Cyclase VI Facilitates Atrioventricular Nodal Conduction. Journal of the American College of Cardiology, 2006, 48, 559-565.	2.8	14
104	Helium-Induced Changes in Circulating Caveolin in Mice Suggest a Novel Mechanism of Cardiac Protection. International Journal of Molecular Sciences, 2019, 20, 2640.	4.1	14
105	The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Frontiers in Physiology, 2019, 10, 1340.	2.8	13
106	Dietary α-Linolenic Acid Counters Cardioprotective Dysfunction in Diabetic Mice: Unconventional PUFA Protection. Nutrients, 2020, 12, 2679.	4.1	13
107	Delta Opioid Receptors and Cardioprotection. Handbook of Experimental Pharmacology, 2017, 247, 301-334.	1.8	12
108	lsoflurane Impacts Murine Melanoma Growth in a Sex-Specific, Immune-Dependent Manner. Anesthesia and Analgesia, 2018, 126, 1910-1913.	2.2	12

#	Article	IF	CITATIONS
109	Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle, 2019, 18, 1268-1280.	2.6	12
110	PTPMT1 Is Required for Embryonic Cardiac Cardiolipin Biosynthesis to Regulate Mitochondrial Morphogenesis and Heart Development. Circulation, 2021, 144, 403-406.	1.6	12
111	Modulation of caveolins, integrins and plasma membrane repair proteins in anthracycline-induced heart failure in rabbits. PLoS ONE, 2017, 12, e0177660.	2.5	12
112	aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2–mediated SphK1-S1PR1-Akt signaling axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
113	Cardioprotection is strain dependent in rat in response to whole body hyperthermia. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1208-H1214.	3.2	11
114	Delayed cardioprotection is mediated via a non-peptide ? opioid agonist, SNC-121, independent of opioid receptor stimulation. Basic Research in Cardiology, 2004, 99, 38-45.	5.9	11
115	REGULATION OF PULMONARY VASOCONSTRICTION BY AGONISTS AND CAVEOLAE. Experimental Lung Research, 2008, 34, 195-208.	1.2	11
116	Cardiacâ€specific overexpression of caveolinâ€3 preserves tâ€ŧubular I Ca during heart failure in mice. Experimental Physiology, 2019, 104, 654-666.	2.0	11
117	Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease. Molecular Metabolism, 2019, 20, 102-114.	6.5	11
118	Benign paroxysmal positional vertigo in the emergency department: An observational study of an Australian regional hospital's acute clinical practice. EMA - Emergency Medicine Australasia, 2021, 33, 1082-1087.	1.1	10
119	Nonâ€canonical roles for caveolin in regulation of membrane repair and mitochondria: implications for stress adaptation with age. Journal of Physiology, 2016, 594, 4581-4589.	2.9	9
120	The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochemical Society Transactions, 2020, 48, 165-177.	3.4	9
121	Epigenetics. Anesthesiology, 2015, 123, 743-744.	2.5	8
122	Chronic \hat{I}^2 1 -adrenoceptor blockade impairs ischaemic tolerance and preconditioning in murine myocardium. European Journal of Pharmacology, 2016, 789, 1-7.	3.5	8
123	Role of decoy molecules in neuronal ischemic preconditioning. Life Sciences, 2011, 88, 670-674.	4.3	7
124	Altered Penile Caveolin Expression in Diabetes: Potential Role in Erectile Dysfunction. Journal of Sexual Medicine, 2017, 14, 1177-1186.	0.6	6
125	Plasma from Volunteers Breathing Helium Reduces Hypoxia-Induced Cell Damage in Human Endothelial Cells—Mechanisms of Remote Protection Against Hypoxia by Helium. Cardiovascular Drugs and Therapy, 2019, 33, 297-306.	2.6	6
126	Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy. American Journal of Physiology - Renal Physiology, 2020, 318, G531-G541.	3.4	6

#	Article	IF	CITATIONS
127	Signaling Epicenters: The Role of Caveolae and Caveolins in Volatile Anesthetic Induced Cardiac Protection. Current Pharmaceutical Design, 2014, 20, 5681-5689.	1.9	6
128	Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB Journal, 2021, 35, e21407.	0.5	4
129	Tumor Necrosis Factor-α Mediates Lung Injury in the Early Phase of Endotoxemia. Pharmaceuticals, 2022, 15, 287.	3.8	4
130	Mitochondrial KATP channels and cardioprotection. Drug Development Research, 2002, 55, 17-21.	2.9	3
131	Of mice and men: modeling cardiovascular complexity in diabetes. Focus on "Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart― American Journal of Physiology - Cell Physiology, 2014, 307, C497-C498.	4.6	3
132	Role of caveolin-3 in lymphocyte activation. Life Sciences, 2015, 121, 35-39.	4.3	3
133	A Slick Way Volatile Anesthetics Reduce Myocardial Injury. Anesthesiology, 2016, 124, 986-988.	2.5	3
134	1 + 1 = 4? Balanced anaesthesia: A sum that is greater than its parts. British Journal of Pharmacology, 2019, 176, 4785-4786.	5.4	3
135	Methyl mercaptan gas: mechanisms of toxicity and demonstration of the effectiveness of cobinamide as an antidote in mice and rabbits. Clinical Toxicology, 2022, 60, 615-622.	1.9	3
136	A new sense of protection: role of the Ca ²⁺ -sensing receptor in ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1300-H1301.	3.2	2
137	No pain, no gain: balancing central versus peripheral benefits of analgesics in the age of the opioid crisis. British Journal of Pharmacology, 2018, 175, 855-856.	5.4	2
138	Editorial policy regarding the citation of preprints in the <i>British Journal of Pharmacology</i> (<i>BJP</i>). British Journal of Pharmacology, 2021, 178, 3605-3610.	5.4	2
139	Knockout of type VI collagen preserves mitochondrial structure and function following myocardial infarction. FASEB Journal, 2013, 27, lb674.	0.5	2
140	Loss of Immunohistochemical Reactivity in Association With Handling-Induced Dark Neurons in Mouse Brains. Toxicologic Pathology, 2020, 48, 437-445.	1.8	1
141	Extracellular Vesicles: A New Paradigm for Cellular Communication in Perioperative Medicine, Critical Care, and Pain Management. Anesthesia and Analgesia, 2021, Publish Ahead of Print, 1162-1179.	2.2	1
142	Caveolin and the aged myocardium. FASEB Journal, 2010, 24, 819.2.	0.5	1
143	Caveolin regulation of microglial activation and proliferation. FASEB Journal, 2011, 25, 1007.1.	0.5	1
144	Role of caveolinâ€3 and mitochondria in protecting the aged myocardium. FASEB Journal, 2012, 26, 864.16.	0.5	1

HEMAL H PATEL

#	Article	IF	CITATIONS
145	Caveolinâ€1 overexpression repairs neuronal degradation in the setting of traumatic brain injury. FASEB Journal, 2013, 27, 693.10.	0.5	1
146	Cholesterol Regulates Insulin Secretion through Protein Prenylation and Membrane Arrangement in INS-1E Cells. Biophysical Journal, 2013, 104, 621a.	0.5	0
147	1596: GREATER MODIFIED FRAILTY INDEX IS ASSOCIATED WITH INCREASED MORBIDITY IN HIP FRACTURE. Critical Care Medicine, 2018, 46, 782-782.	0.9	0
148	1600: PSYCHIATRIC ILLNESS IN TRAUMA PATIENTS IS ASSOCIATED WITH INCREASED MORTALITY AND MORBIDITY. Critical Care Medicine, 2018, 46, 784-784.	0.9	0
149	Dexmedetomidine and Cardiac "Postconditioning― Anesthesia and Analgesia, 2020, 130, 87-89.	2.2	Ο
150	Mitochondria Damage as Early Indicator in an APP ^{NLâ€Gâ€F} Mouse Model of Alzheimer's Disease. FASEB Journal, 2021, 35, .	0.5	0
151	Localization of caveolae and mitochondria in adult cardiac myocytes: implications for reductive signaling. FASEB Journal, 2006, 20, A691.	0.5	0
152	Caveolinâ€∃ knockout mice have decreased enrichment of redoxâ€sensitive enzymes in renal caveolar fractions. FASEB Journal, 2007, 21, A1424.	0.5	0
153	Cardiac‧pecific Overexpression of Caveolinâ€3 Enhances Akt Phosphorylation. FASEB Journal, 2007, 21, A794.	0.5	0
154	Dynamin and caveolae in cardiac ischemic preconditioning. FASEB Journal, 2009, 23, LB381.	0.5	0
155	A role for miRâ€471 in cardiac ischemiaâ€reperfusion injury. FASEB Journal, 2010, 24, 626.2.	0.5	Ο
156	Regulation of mitochondrial function by caveolinâ $\in 3$. FASEB Journal, 2010, 24, 819.1.	0.5	0
157	EFFECT OF EPICATECHIN AND NALOXONE ON CARDIOâ€PROTECTIVE PHENOTYPE. FASEB Journal, 2010, 24, 1029.8.	0.5	0
158	Effects of noble gas conditioning on Caveolin expression in the rat heart in vivo. FASEB Journal, 2012, 26, 1114.17.	0.5	0
159	Reversible tetracylineâ€controlled transactivator (rtTA)―inducible expression of neuronâ€ŧargeted Cavâ€1 and recovery after neuronal injury. FASEB Journal, 2012, 26, 1035.4.	0.5	0
160	Neuronâ€ŧargeted Cavâ€1 as a novel therapy for Traumatic Brain Injury. FASEB Journal, 2012, 26, 1035.3.	0.5	0
161	Myocardial cholesterol homeostasis is altered by age and Cavâ€3 knockdown. FASEB Journal, 2012, 26, 1117.5.	0.5	0
162	Knockout of type VI collagen improves cardiac function and remodeling following myocardial infarction. FASEB Journal, 2012, 26, 1060.13.	0.5	0

#	Article	IF	CITATIONS
163	Effect of lowâ€dose epicatechin on mitochondrial function and membrane fluidity. FASEB Journal, 2012, 26, 852.1.	0.5	0
164	Vasopressin levels in patients undergoing pulmonary thromboendarterectomy (PTE). FASEB Journal, 2012, 26, 684.11.	0.5	0
165	Longâ€ŧerm atorvastatin treatment alters cardiac ultrastructure in healthy mice while preserving systolic cardiac function. FASEB Journal, 2013, 27, .	0.5	0
166	AKIP1 protects against cardiac injury via enhanced mitochondrial function. FASEB Journal, 2013, 27, 657.3.	0.5	0
167	Caveolinâ€l regulates neuronal regeneration in peripheral nerve crush injury via regulation of Schwann cell function. FASEB Journal, 2013, 27, 1142.8.	0.5	0
168	Angiotensinâ€l induced cardiac hypertrophic responses are mediated via PKC and NFAT signaling is attenuated by caveolinâ€3 in ventricular myocytes. FASEB Journal, 2013, 27, 1197.2.	0.5	0
169	Dynamic expression and localization of Protein Kinase A regulatory subunit Rlα in cardiac mitochondria controls response to oxidative stress. FASEB Journal, 2013, 27, 1209.22.	0.5	0
170	Generation of caveolinâ€⊋ overexpressing C. elegans and their response to stress. FASEB Journal, 2013, 27, 1211.4.	0.5	0
171	Helium Postconditioning Regulates Caveolinâ€1/â€3 Translocation and Gene Expression. FASEB Journal, 2015, 29, 1025.15.	0.5	0
172	Novel Roles for Catestatin in Cardiac Metabolism and Physiology. FASEB Journal, 2015, 29, 1025.12.	0.5	0
173	Ischemic Tolerance and Conventional Preconditioning are Impaired by Chronic β 1 â€Blockade. FASEB Journal, 2015, 29, 635.1.	0.5	0
174	Novel Marine Compounds Modulate Mitochondrial Function in H9c2 Cells: Potential New Pharmaceutical Targets to Control Cardiac Metabolism. FASEB Journal, 2018, 32, .	0.5	0
175	Loss of Caveolinâ€3 (Cavâ€3) Promotes Gâ€proteinâ€regulated Matrix Metalloprotease 14 (MMP14) Activation in the Aged Heart. FASEB Journal, 2018, 32, .	0.5	0
176	Caveolin scaffolding domain plays an important role in cancer cell migration. FASEB Journal, 2019, 33, 815.12.	0.5	0
177	RhoA inhibition and Rac1 Activation Increases Mitochondrial Respiration in Propofol Induced Neonatal Neurotoxicity. FASEB Journal, 2019, 33, 813.16.	0.5	0
178	Sex Differences in Typeâ€⊋ Diabetes: Implications for Caveolinâ€3 Regulated Mitochondrial Function. FASEB Journal, 2019, 33, 830.4.	0.5	0
179	Effect of Mediators in the Plasma of Eâ€Cigarette Users on Endothelial and Epithelial Cell Metabolism. FASEB Journal, 2022, 36, .	0.5	0
180	Abstract 24070: Cardiac-Specific Overexpression Of Caveolin-3 Expedites Cardiac Relaxation After Adrenergic Stimulation. Circulation, 2017, 136, .	1.6	0