
Hao-Yan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/824314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell, 2017, 170, 548-563.e16.	28.9	1,377
2	Influence of HLA-C Expression Level on HIV Control. Science, 2013, 340, 87-91.	12.6	352
3	m6A-dependent glycolysis enhances colorectal cancer progression. Molecular Cancer, 2020, 19, 72.	19.2	242
4	<i>F. nucleatum</i> targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut, 2021, 70, 2123-2137.	12.1	136
5	Enterotoxigenic Bacteroides fragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology, 2021, 161, 1552-1566.e12.	1.3	130
6	Berberine may rescue <i>Fusobacterium nucleatum</i> -induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget, 2015, 6, 32013-32026.	1.8	108
7	A Genetic Risk Score Combining Ten Psoriasis Risk Loci Improves Disease Prediction. PLoS ONE, 2011, 6, e19454.	2.5	84
8	Probiotics <i>Clostridium butyricum</i> and <i>Bacillus subtilis</i> ameliorate intestinal tumorigenesis. Future Microbiology, 2015, 10, 1433-1445.	2.0	82
9	CXCL11 Correlates With Antitumor Immunity and an Improved Prognosis in Colon Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 646252.	3.7	78
10	Analysis of long non-coding RNA expression profiles in pancreatic ductal adenocarcinoma. Scientific Reports, 2016, 6, 33535.	3.3	68
11	Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease. PLoS Genetics, 2012, 8, e1002514.	3.5	66
12	MicroRNA sequence polymorphisms and the risk of different types of cancer. Scientific Reports, 2014, 4, 3648.	3.3	64
13	Overexpression of NOX4 predicts poor prognosis and promotes tumor progression in human colorectal cancer. Oncotarget, 2017, 8, 33586-33600.	1.8	59
14	Fecal <i>Fusobacterium nucleatum</i> for the diagnosis of colorectal tumor: A systematic review and metaâ€analysis. Cancer Medicine, 2019, 8, 480-491.	2.8	48
15	CCAT1 IncRNA Promotes Inflammatory Bowel Disease Malignancy by Destroying Intestinal Barrier via Downregulating miR-185-3p. Inflammatory Bowel Diseases, 2019, 25, 862-874.	1.9	46
16	Genetic variants in the inositol phosphate metabolism pathway and risk of different types of cancer. Scientific Reports, 2015, 5, 8473.	3.3	35
17	TEAD4 promotes colorectal tumorigenesis via transcriptionally targeting YAP1. Cell Cycle, 2018, 17, 102-109.	2.6	34
18	The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis. Cell Death and Disease, 2018, 9, 687.	6.3	34

HAO-YAN CHEN

#	Article	IF	CITATIONS
19	High Expression of FAM83B Predicts Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma and Correlates with Cell Cycle and Cell Proliferation. Journal of Cancer, 2017, 8, 3154-3165.	2.5	33
20	miR-508 Defines the Stem-like/Mesenchymal Subtype in Colorectal Cancer. Cancer Research, 2018, 78, 1751-1765.	0.9	30
21	A tumor microenvironment-specific gene expression signature predicts chemotherapy resistance in colorectal cancer patients. Npj Precision Oncology, 2021, 5, 7.	5.4	29
22	Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget, 2015, 6, 37028-37042.	1.8	29
23	Pseudopodâ€associated protein KIF20B promotes Gli1â€induced epithelialâ€mesenchymal transition modulated by pseudopodial actin dynamic in human colorectal cancer. Molecular Carcinogenesis, 2018, 57, 911-925.	2.7	17
24	High expression of GPR116 indicates poor survival outcome and promotes tumor progression in colorectal carcinoma. Oncotarget, 2017, 8, 47943-47956.	1.8	13
25	Role of C9orf140 in the promotion of colorectal cancer progression and mechanisms of its upregulation via activation of STAT5, β-catenin and EZH2. Carcinogenesis, 2014, 35, 1389-1398.	2.8	11
26	ALKBH4 Functions as a Suppressor of Colorectal Cancer Metastasis via Competitively Binding to WDR5. Frontiers in Cell and Developmental Biology, 2020, 8, 293.	3.7	9
27	Alcohol consumption and the risk of Barrett's esophagus: a comprehensive meta-analysis. Scientific Reports, 2015, 5, 16048.	3.3	7
28	Faecal microbiota transplantation, a promising way to treat colorectal cancer. EBioMedicine, 2019, 49, 13-14.	6.1	7
29	The Interaction of LILRB2 with HLA-B Is Associated with Psoriasis Susceptibility. Journal of Investigative Dermatology, 2020, 140, 1292-1295.e3.	0.7	6
30	Germline mutations in a DNA repair pathway are associated with familial colorectal cancer. JCI Insight, 2021, 6, .	5.0	6