Edward W Tate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8240818/publications.pdf

Version: 2024-02-01

181 papers 8,404 citations

50276 46 h-index 79 g-index

224 all docs

224 docs citations

times ranked

224

8878 citing authors

#	Article	IF	CITATIONS
1	UCHL1 as a novel target in breast cancer: emerging insights from cell and chemical biology. British Journal of Cancer, 2022, 126, 24-33.	6.4	29
2	Evaluating Hedgehog Acyltransferase Activity and Inhibition Using the Acylation-coupled Lipophilic Induction of Polarization (Acyl-cLIP) Assay. Methods in Molecular Biology, 2022, 2374, 13-26.	0.9	5
3	Identification of the first structurally validated covalent ligands of the small GTPase RAB27A. RSC Medicinal Chemistry, 2022, 13, 150-155.	3.9	7
4	Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. ELife, 2022, 11, .	6.0	19
5	Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery. Current Opinion in Chemical Biology, 2021, 60, 20-29.	6.1	72
6	Deconvoluting the biology and druggability of protein lipidation using chemical proteomics. Current Opinion in Chemical Biology, 2021, 60, 97-112.	6.1	7
7	Activity-based protein profiling reveals deubiquitinase and aldehyde dehydrogenase targets of a cyanopyrrolidine probe. RSC Medicinal Chemistry, 2021, 12, 1935-1943.	3.9	11
8	Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nature Chemical Biology, 2021, 17, 776-783.	8.0	17
9	Photochemical Probe Identification of a Smallâ€Molecule Inhibitor Binding Site in Hedgehog Acyltransferase (HHAT)**. Angewandte Chemie, 2021, 133, 13654-13659.	2.0	0
10	A Probe for NLRP3 Inflammasome Inhibitor MCC950 Identifies Carbonic Anhydrase 2 as a Novel Target. ACS Chemical Biology, 2021, 16, 982-990.	3.4	27
11	Photochemical Probe Identification of a Smallâ€Molecule Inhibitor Binding Site in Hedgehog Acyltransferase (HHAT)**. Angewandte Chemie - International Edition, 2021, 60, 13542-13547.	13.8	18
12	A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. Journal of the American Chemical Society, 2021, 143, 8911-8924.	13.7	14
13	Beyond targeted protein degradation: LD·ATTECs clear cellular lipid droplets. Cell Research, 2021, 31, 945-946.	12.0	8
14	Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends in Pharmacological Sciences, 2021, 42, 870-882.	8.7	17
15	Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion. PLoS Biology, 2021, 19, e3001408.	5. 6	13
16	Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation. Nature Protocols, 2021, 16, 5083-5122.	12.0	24
17	How Structures of Complement Complexes Guide Therapeutic Design. Sub-Cellular Biochemistry, 2021, 96, 273-295.	2.4	0
18	Structure, mechanism, and inhibition of Hedgehog acyltransferase. Molecular Cell, 2021, 81, 5025-5038.e10.	9.7	28

#	Article	IF	CITATIONS
19	The molecular function of kallikreinâ€related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer. Molecular Oncology, 2020, 14, 105-128.	4.6	13
20	Structure–Activity Relationship Studies of a Novel Class of Transmission Blocking Antimalarials Targeting Male Gametes. Journal of Medicinal Chemistry, 2020, 63, 2240-2262.	6.4	11
21	Development of Photocrosslinking Probes Based on Huwentoxin-IV to Map the Site of Interaction on Nav1.7. Cell Chemical Biology, 2020, 27, 306-313.e4.	5.2	16
22	Faecal neutrophil elastase-antiprotease balance reflects colitis severity. Mucosal Immunology, 2020, 13, 322-333.	6.0	29
23	Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins. Nature Communications, 2020, 11, 3495.	12.8	29
24	Structure-Guided Design and In-Cell Target Profiling of a Cell-Active Target Engagement Probe for PARP Inhibitors. ACS Chemical Biology, 2020, 15, 325-333.	3.4	18
25	Short Chain Fatty Acids Enhance Expression and Activity of the Umami Taste Receptor in Enteroendocrine Cells via a Gî±i/o Pathway. Frontiers in Nutrition, 2020, 7, 568991.	3.7	17
26	Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. International Journal of Molecular Sciences, 2020, 21, 8404.	4.1	28
27	Photoactive Bifunctional Degraders: Precision Tools To Regulate Protein Stability. Journal of Medicinal Chemistry, 2020, 63, 15483-15493.	6.4	10
28	Internalization-Dependent Free Fatty Acid Receptor 2 Signaling Is Essential for Propionate-Induced Anorectic Gut Hormone Release. IScience, 2020, 23, 101449.	4.1	14
29	The Missing Link between (Un)druggable and Degradable KRAS. ACS Central Science, 2020, 6, 1281-1284.	11.3	4
30	Wheat pathogen < i>Zymoseptoria tritici N < /i> -myristoyltransferase inhibitors: on-target antifungal activity and an unusual metabolic defense mechanism. RSC Chemical Biology, 2020, 1, 68-78.	4.1	3
31	Peptide Probes for <i>Plasmodium falciparum</i> NyoA Tail Interacting Protein (MTIP): Exploring the Druggability of the Malaria Parasite Motor Complex. ACS Chemical Biology, 2020, 15, 1313-1320.	3.4	7
32	Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39, 4896-4908.	5.9	27
33	Discovery of a Potent and Selective Covalent Inhibitor and Activity-Based Probe for the Deubiquitylating Enzyme UCHL1, with Antifibrotic Activity. Journal of the American Chemical Society, 2020, 142, 12020-12026.	13.7	51
34	d-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nature Chemical Biology, 2020, 16, 686-694.	8.0	21
35	A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chemical Communications, 2020, 56, 5532-5535.	4.1	81
36	Novel Thienopyrimidine Inhibitors of <i>Leishmania N</i> Myristoyltransferase with On-Target Activity in Intracellular Amastigotes. Journal of Medicinal Chemistry, 2020, 63, 7740-7765.	6.4	15

#	Article		Citations
37	High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation. Nature Communications, 2020, 11, 1132.		58
38	A Natural Product Puts Malaria on a Low-Fat Diet. Cell Chemical Biology, 2020, 27, 137-139.		0
39	Re-Evaluating the Mechanism of Action of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl DUB Inhibitors b-AP15 and VLX1570: A Paradigmatic Example of Unspecific Protein Cross-linking with Michael Acceptor Motif-Containing Drugs. Journal of Medicinal Chemistry, 2020, 63, 3756-3762.	6.4	31
40	Antibody–PROTAC Conjugates Enable HER2-Dependent Targeted Protein Degradation of BRD4. ACS Chemical Biology, 2020, 15, 1306-1312.	3 . 4	165
41	Chemical biology of noncanonical G protein–coupled receptor signaling: TowardÂadvanced therapeutics. Current Opinion in Chemical Biology, 2020, 56, 98-110.	6.1	15
42	<scp>CRISPR</scp> ― <scp>TAPE</scp> : protein entric <scp>CRISPR</scp> guide design for targeted proteome engineering. Molecular Systems Biology, 2020, 16, e9475.	7.2	4
43	Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Science Alliance, 2020, 3, e201900542.	2.8	32
44	Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. ELife, 2020, 9, .		24
45	Photoactivatable Myristic Acid Probes for UNC119â€Cargo Interactions. ChemBioChem, 2019, 20, 134-139.	2.6	7
46	Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nature Communications, 2019, 10, 3134.	12.8	9
47	Acylation-coupled lipophilic induction of polarisation (Acyl-cLIP): a universal assay for lipid transferase and hydrolase enzymes. Chemical Science, 2019, 10, 8995-9000.	7.4	27
48	Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry. PLoS Pathogens, 2019, 15, e1007956.	4.7	7
49	FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575, 693-698.	27.8	1,624
50	Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry, 2019, 27, 114962.	3.0	21
51	Imaging of Chemotherapy-Induced Acute Cardiotoxicity with ¹⁸ F-Labeled Lipophilic Cations. Journal of Nuclear Medicine, 2019, 60, 1750-1756.	5.0	26
52	Structure-Guided Identification of Resistance Breaking Antimalarial Nâ€'Myristoyltransferase Inhibitors. Cell Chemical Biology, 2019, 26, 991-1000.e7.	5. 2	26
53	Validation and Invalidation of Chemical Probes for the Human N-myristoyltransferases. Cell Chemical Biology, 2019, 26, 892-900.e4.	5.2	33
54	Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nature Chemistry, 2019, 11, 552-561.	13.6	80

#	Article	IF	CITATIONS
55	BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQPO water permeability. Experimental Eye Research, 2019, 185, 107585.	2.6	16
56	Recent Developments in Cell Permeable Deubiquitinating Enzyme Activity-Based Probes. Frontiers in Chemistry, 2019, 7, 876.	3.6	25
57	Chemical biology tools for probing transcytosis at the blood–brain barrier. Chemical Science, 2019, 10, 10772-10778.	7.4	9
58	AWZ1066S, a highly specific anti- <i>Wolbachia </i> drug candidate for a short-course treatment of filariasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1414-1419.	7.1	57
59	Whole Proteome Profiling of N-Myristoyltransferase Activity and Inhibition Using Sortase A. Molecular and Cellular Proteomics, 2019, 18, 115-126.	3.8	22
60	Coping with strong translational noncrystallographic symmetry and extreme anisotropy in molecular replacement with <i>Phaser</i> human Rab27a. Acta Crystallographica Section D: Structural Biology, 2019, 75, 342-353.	2.3	8
61	Highâ€Throughput Kinetic Analysis for Targetâ€Directed Covalent Ligand Discovery. Angewandte Chemie - International Edition, 2018, 57, 5257-5261.	13.8	59
62	Highâ€Throughput Kinetic Analysis for Targetâ€Directed Covalent Ligand Discovery. Angewandte Chemie, 2018, 130, 5355-5359.	2.0	5
63	Broad-Spectrum Regulation of Nonreceptor Tyrosine Kinases by the Bacterial ADP-Ribosyltransferase EspJ. MBio, 2018, 9, .	4.1	21
64	<i><math>N>-Myristoylation as a Drug Target in Malaria: Exploring the Role of <i>$N>-Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infectious Diseases, 2018, 4, 449-457.$</i></math></i>	3.8	37
65	Development of a Photo-Cross-Linkable Diaminoquinazoline Inhibitor for Target Identification in <i>Plasmodium falciparum (i). ACS Infectious Diseases, 2018, 4, 523-530.</i>	3.8	20
66	Building bridges for highly selective, potent and stable oxytocin and vasopressin analogs. Bioorganic and Medicinal Chemistry, 2018, 26, 3039-3045.	3.0	21
67	New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness. Parasitology, 2018, 145, 157-174.	1.5	26
68	Pharmacological Inhibition of PARP6 Triggers Multipolar Spindle Formation and Elicits Therapeutic Effects in Breast Cancer. Cancer Research, 2018, 78, 6691-6702.	0.9	36
69	Plasma membrane profiling during enterohemorrhagic E. coli infection reveals that the metalloprotease StcE cleaves CD55 from host epithelial surfaces. Journal of Biological Chemistry, 2018, 293, 17188-17199.	3.4	7
70	Depsipeptides Featuring a Neutral P1 Are Potent Inhibitors of Kallikrein-Related Peptidase 6 with On-Target Cellular Activity. Journal of Medicinal Chemistry, 2018, 61, 8859-8874.	6.4	23
71	Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus. Nature Chemistry, 2018, 10, 599-606.	13.6	96
72	High-yielding ¹⁸ F radiosynthesis of a novel oxytocin receptor tracer, a probe for nose-to-brain oxytocin uptake <i>in vivo</i> . Chemical Communications, 2018, 54, 8120-8123.	4.1	28

#	Article	IF	Citations
73	Activity-Based Protein Profiling for the Study of Parasite Biology. Current Topics in Microbiology and Immunology, 2018, 420, 155-174.	1.1	6
74	Mouse Stbd1 is <i>N</i> -myristoylated and affects ER-mitochondria association and mitochondrial morphology. Journal of Cell Science, 2017, 130, 903-915.	2.0	22
75	Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane. Chemical Communications, 2017, 53, 5182-5185.	4.1	30
76	Dynamic Protein Acylation: New Substrates, Mechanisms, and Drug Targets. Trends in Biochemical Sciences, 2017, 42, 566-581.	7.5	113
77	Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET. Scientific Reports, 2017, 7, 39841.	3.3	6
78	Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy. Journal of Visualized Experiments, 2017, , .	0.3	9
79	Microfluidic Mobility Shift Assay for Real-Time Analysis of Peptide N-Palmitoylation. SLAS Discovery, 2017, 22, 418-424.	2.7	10
80	Structure-guided optimization of quinoline inhibitors of Plasmodium N-myristoyltransferase. MedChemComm, 2017, 8, 191-197.	3.4	14
81	Tipifarnib prevents development of hypoxia-induced pulmonary hypertension. Cardiovascular Research, 2017, 113, 276-287.	3.8	16
82	Design and development of histone deacetylase (HDAC) chemical probes for cell-based profiling. Molecular BioSystems, 2016, 12, 1781-1789.	2.9	10
83	The Rab-binding Profiles of Bacterial Virulence Factors during Infection. Journal of Biological Chemistry, 2016, 291, 5832-5843.	3.4	14
84	Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite <i>Trypanosoma brucei</i> . ACS Infectious Diseases, 2016, 2, 427-441.	3.8	51
85	Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells. ACS Chemical Biology, 2016, 11, 3256-3262.	3.4	43
86	Quantitative Chemical Proteomic Profiling of Ubiquitin Specific Proteases in Intact Cancer Cells. ACS Chemical Biology, 2016, 11, 3268-3272.	3.4	62
87	<i>N</i> -Myristoyltransferase Inhibition Induces ER-Stress, Cell Cycle Arrest, and Apoptosis in Cancer Cells. ACS Chemical Biology, 2016, 11, 2165-2176.	3.4	60
88	Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach. Molecular and Cellular Proteomics, 2016, 15, 715-725.	3.8	56
89	Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase. Data in Brief, 2016, 7, 257-281.	1.0	12
90	Time-resolved FRET reports FGFR1 dimerization and formation of a complex with its effector PLC \hat{I}^31 . Advances in Biological Regulation, 2016, 60, 6-13.	2.3	9

#	Article		Citations
91	Direct Targeting of the Ras GTPase Superfamily Through Structure- Based Design. Current Topics in Medicinal Chemistry, 2016, 17, 16-29.		12
92	Cholesterylation: a tail of hedgehog. Biochemical Society Transactions, 2015, 43, 262-267.	3.4	15
93	Membrane bound O-acyltransferases and their inhibitors. Biochemical Society Transactions, 2015, 43, 246-252.	3.4	37
94	The Plasmodium Class XIV Myosin, MyoB, Has a Distinct Subcellular Location in Invasive and Motile Stages of the Malaria Parasite and an Unusual Light Chain. Journal of Biological Chemistry, 2015, 290, 12147-12164.	3.4	31
95	Chemoproteomic Evaluation of the Polyacetylene Callyspongynic Acid. Chemistry - A European Journal, 2015, 21, 10721-10728.	3.3	20
96	Topological Analysis of Hedgehog Acyltransferase, a Multipalmitoylated Transmembrane Protein. Journal of Biological Chemistry, 2015, 290, 3293-3307.	3 . 4	54
97	Target profiling of zerumbone using a novel cell-permeable clickable probe and quantitative chemical proteomics. Chemical Communications, 2015, 51, 5497-5500.	4.1	26
98	Targeting a Dynamic Protein–Protein Interaction: Fragment Screening against the Malaria Myosinâ€A Motor Complex. ChemMedChem, 2015, 10, 134-143.	3.2	19
99	Global profiling of protein lipidation using chemical proteomic technologies. Current Opinion in Chemical Biology, 2015, 24, 48-57.	6.1	90
100	Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor. Infection and Immunity, 2015, 83, 3989-4002.	2.2	42
101	Global Analysis of Protein N-Myristoylation and Exploration of N-Myristoyltransferase as a Drug Target in the Neglected Human Pathogen Leishmania donovani. Chemistry and Biology, 2015, 22, 342-354.	6.0	90
102	Creating a customized intracellular niche: subversion of host cell signaling by <i>Legionella</i> type IV secretion system effectors. Canadian Journal of Microbiology, 2015, 61, 617-635.	1.7	31
103	Multifunctional Reagents for Quantitative Proteomeâ€Wide Analysis of Protein Modification in Human Cells and Dynamic Profiling of Protein Lipidation During Vertebrate Development. Angewandte Chemie - International Edition, 2015, 54, 5948-5951.	13.8	81
104	Modulation of Amide Bond Rotamers in 5-Acyl-6,7-dihydrothieno[3,2- <i>c</i>) pyridines. Journal of Organic Chemistry, 2015, 80, 4370-4377.	3.2	26
105	Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase. Analytical Biochemistry, 2015, 490, 66-72.	2.4	26
106	Systems Analysis of Protein Fatty Acylation in Herpes Simplex Virus-Infected Cells Using Chemical Proteomics. Chemistry and Biology, 2015, 22, 1008-1017.	6.0	60
107	Discovery of pyridyl-based inhibitors of Plasmodium falciparum N-myristoyltransferase. MedChemComm, 2015, 6, 1767-1772.	3.4	13
108	Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase. MedChemComm, 2015, 6, 1761-1766.	3.4	30

#	Article	IF	CITATIONS
109	Automated multiwell fluorescence lifetime imaging for FÃ \P rster resonance energy transfer assays and high content analysis. Analytical Methods, 2015, 7, 4071-4089.	2.7	10
110	Quantitative Lipoproteomics in Clostridium difficile Reveals a Role for Lipoproteins in Sporulation. Chemistry and Biology, 2015, 22, 1562-1573.	6.0	42
111	Myristoylation profiling in human cells and zebrafish. Data in Brief, 2015, 4, 379-383.	1.0	9
112	Synthesis of unsaturated phosphatidylinositol 4-phosphates and the effects of substrate unsaturation on SopB phosphatase activity. Organic and Biomolecular Chemistry, 2015, 13, 2001-2011.	2.8	8
113	Abstract 230: Protein Farnesylation Inhibitor Tipifarnib Prevents Development of Chronic Hypoxia-induced Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
114	Attenuation of Hedgehog Acyltransferase-Catalyzed Sonic Hedgehog Palmitoylation Causes Reduced Signaling, Proliferation and Invasiveness of Human Carcinoma Cells. PLoS ONE, 2014, 9, e89899.	2.5	34
115	Using a Non-Image-Based Medium-Throughput Assay for Screening Compounds Targeting N-myristoylation in Intracellular Leishmania Amastigotes. PLoS Neglected Tropical Diseases, 2014, 8, e3363.	3.0	16
116	Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions. Structure, 2014, 22, 1831-1843.	3.3	48
117	Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nature Communications, 2014, 5, 4919.	12.8	199
118	<i>N-</i> Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology, 2014, 141, 37-49.	1.5	64
119	Design and Synthesis of High Affinity Inhibitors of <i>Plasmodium falciparum</i> and <i>Plasmodium vivax N</i> -Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP). Journal of Medicinal Chemistry, 2014, 57, 2773-2788.	6.4	63
120	Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nature Chemistry, 2014, 6, 112-121.	13.6	196
121	Diverse modes of binding in structures of <i>Leishmania major N</i> -myristoyltransferase with selective inhibitors. IUCrJ, 2014, 1, 250-260.	2.2	38
122	New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish. Chemical Science, 2014, 5, 4249-4259.	7.4	37
123	Structure-Based Design of Potent and Selective <i>Leishmania N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 8664-8670.	6.4	56
124	Crystal Structures of Stapled and Hydrogen Bond Surrogate Peptides Targeting a Fully Buried Protein–Helix Interaction. ACS Chemical Biology, 2014, 9, 2204-2209.	3.4	43
125	Genome-wide Functional Analysis of Plasmodium Protein Phosphatases Reveals Key Regulators of Parasite Development and Differentiation. Cell Host and Microbe, 2014, 16, 128-140.	11.0	122
126	A succinyl lysine-based photo-cross-linking peptide probe for Sirtuin 5. Organic and Biomolecular Chemistry, 2014, 12, 4310-4313.	2.8	10

#	Article		Citations
127	Peptidomimetic inhibitors of $\langle i \rangle N \langle i \rangle$ -myristoyltransferase from human malaria and leishmaniasis parasites. Organic and Biomolecular Chemistry, 2014, 12, 8132-8137.		30
128	Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II. Thrombosis and Haemostasis, 2014, 112, 402-411.	3.4	27
129	Discovery of Novel and Ligand-Efficient Inhibitors of Plasmodium falciparum and Plasmodium vivax <i>N</i> -Myristoyltransferase. Journal of Medicinal Chemistry, 2013, 56, 371-375.	6.4	58
130	Automated fluorescence lifetime imaging plate reader and its application to Förster resonant energy transfer readout of Gag protein aggregation. Journal of Biophotonics, 2013, 6, 398-408.	2.3	28
131	Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite. Biology Open, 2013, 2, 1160-1170.	1.2	51
132	Chemical proteomics: a powerful tool for exploring protein lipidation. Biochemical Society Transactions, 2013, 41, 56-61.	3.4	21
133	Selective Inhibitors of Protozoan Protein N-myristoyltransferases as Starting Points for Tropical Disease Medicinal Chemistry Programs. PLoS Neglected Tropical Diseases, 2012, 6, e1625.	3.0	79
134	Regulation of the Plasmodium Motor Complex. Journal of Biological Chemistry, 2012, 287, 36968-36977.	3.4	24
135	Discovery of Plasmodium vivax <i>N</i> Myristoyltransferase Inhibitors: Screening, Synthesis, and Structural Characterization of their Binding Mode. Journal of Medicinal Chemistry, 2012, 55, 3578-3582.	6.4	65
136	Design and Synthesis of Inhibitors of <i>Plasmodium falciparumN</i> Promising Target for Antimalarial Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 8879-8890.	6.4	56
137	Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nature Protocols, 2012, 7, 105-117.	12.0	93
138	Lipid membrane curvature induced by distearoyl phosphatidylinositol 4-phosphate. Soft Matter, 2012, 8, 3090.	2.7	36
139	Mutational Locally Enhanced Sampling (MULES) for quantitative prediction of the effects of mutations at protein–protein interfaces. Chemical Science, 2012, 3, 1503.	7.4	2
140	A fluorescence-based assay for N-myristoyltransferase activity. Analytical Biochemistry, 2012, 421, 342-344.	2.4	69
141	A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in Trypanosoma brucei. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1178-1191.	4.1	22
142	Novel inhibitors of surface layer processing in Clostridium difficile. Bioorganic and Medicinal Chemistry, 2012, 20, 614-621.	3.0	11
143	A New Chemical Handle for Protein AMPylation at the Host–Pathogen Interface. ChemBioChem, 2012, 13, 183-185.	2.6	17
144	Activity-based probes: discovering new biology and new drug targets. Chemical Society Reviews, 2011, 40, 246-257.	38.1	157

#	Article		CITATIONS
145	Comparing experimental and computational alanine scanning techniques for probing a prototypical protein–protein interaction. Protein Engineering, Design and Selection, 2011, 24, 197-207.		73
146	Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chemical Communications, 2011, 47, 4081.	4.1	78
147	Application of Activity-Based Protein Profiling to the Study of Microbial Pathogenesis. Topics in Current Chemistry, 2011, 324, 115-135.	4.0	17
148	Activity-Based Profiling for Drug Discovery. Chemistry and Biology, 2011, 18, 407-409.	6.0	11
149	Roles of Cysteine Proteases Cwp84 and Cwp13 in Biogenesis of the Cell Wall of Clostridium difficile. Journal of Bacteriology, 2011, 193, 3276-3285.	2.2	51
150	Protein myristoylation in health and disease. Journal of Chemical Biology, 2010, 3, 19-35.	2.2	208
151	Rapid Multilabel Detection of Geranylgeranylated Proteins by Using Bioorthogonal Ligation Chemistry. ChemBioChem, 2010, 11, 771-773.	2.6	48
152	Organic Solvent Nanofiltration: A New Paradigm in Peptide Synthesis. Organic Process Research and Development, 2010, 14, 1313-1325.	2.7	45
153	Getting a chemical handle on proteinpost-translational modification. Organic and Biomolecular Chemistry, 2010, 8, 731-738.	2.8	49
154	Chemical Probes of Surface Layer Biogenesis in <i>Clostridium difficile</i> . ACS Chemical Biology, 2010, 5, 279-285.	3.4	55
155	N-Myristoyltransferase from Leishmania donovani: Structural and Functional Characterisation of a Potential Drug Target for Visceral Leishmaniasis. Journal of Molecular Biology, 2010, 396, 985-999.	4.2	98
156	Membrane enhanced peptide synthesis. Chemical Communications, 2010, 46, 2808.	4.1	42
157	Interaction and dynamics of the Plasmodium falciparum MTIP–MyoA complex, a key component of the invasion motor in the malaria parasite. Molecular BioSystems, 2010, 6, 494.	2.9	26
158	Potent Inhibitors of \hat{l}^2 -Tryptase and Human Leukocyte Elastase Based on the MCoTI-II Scaffold. Journal of Medicinal Chemistry, 2009, 52, 6197-6200.	6.4	126
159	Recent advances in chemical proteomics: exploring the post-translational proteome. Journal of Chemical Biology, 2008, 1, 17-26.	2.2	32
160	<i>N</i> â€Myristoyltransferase: a Prospective Drug Target for Protozoan Parasites. ChemMedChem, 2008, 3, 402-408.	3.2	60
161	N-Myristoyl transferase-mediated protein labelling in vivo. Organic and Biomolecular Chemistry, 2008, 6, 2308.	2.8	128
162	Specific N-terminal protein labelling: use of FMDV 3Cpro protease and native chemical ligation. Chemical Communications, 2008, , 3369.	4.1	27

#	Article	IF	Citations
163	Site-specific N-terminal labelling of proteinsin vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. Chemical Communications, 2008, , 480-482.		78
164	Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Organic and Biomolecular Chemistry, 2008, 6, 1462.	2.8	148
165	Activity Based Chemical Proteomics: Profiling Proteases as Drug Targets. Current Drug Discovery Technologies, 2008, 5, 200-212.	1.2	21
166	Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of <i>Plasmodium falciparum </i> . Biochemical Journal, 2007, 408, 173-180.	3.7	61
167	Immobilized Protease-Assisted Synthesis of Engineered Cysteine-Knot Microproteins. ChemBioChem, 2007, 8, 1107-1109.	2.6	46
168	A highly enantioselective total synthesis of (+)-goniodiol. Organic and Biomolecular Chemistry, 2006, 4, 1698.	2.8	28
169	Total synthesis of the macrocyclic cysteine knot microprotein MCoTI-II. Chemical Communications, 2006, , 2848.	4.1	55
170	Chemical intervention in signalling networks: recent advances and applications. Signal Transduction, 2006, 6, 144-159.	0.4	13
171	Peptide-based inhibitors of N-myristoyl transferase generated from a lipid/combinatorial peptide chimera library. Signal Transduction, 2006, 6, 160-166.	0.4	5
172	A short formal route to $(\hat{A}\pm)$ -lepadin B using a xanthate-mediated free radical cyclisation/vinylation sequenceElectronic supplementary information (ESI) available: experimental and characterisation data for the transformation of 13 and 14. See http://www.rsc.org/suppdata/cc/b2/b203604e/. Chemical Communications, 2002, , 1430-1431.	4.1	42
173	Efficient construction of polycyclic alkaloid synthetic precursors by a xanthate free radical addition and Mannich cyclisation cascade. Tetrahedron Letters, 2002, 43, 4683-4686.	1.4	28
174	The synthesis of mono- and bicyclic ethers via acid catalysed ring-opening cyclisation of tetrahydropyranyl ether derivatives. Journal of the Chemical Society, Perkin Transactions $1,2000,12000$, $1829-1836$.	1.3	6
175	Oxygen to carbon rearrangements of anomerically linked alkenols from tetrahydropyran derivatives: an investigation of the reaction mechanism via a double isotopic labelling crossover study. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1815-1827.	1.3	16
176	Diastereoselective oxygen to carbon rearrangements of anomerically linked enol ethers and the total synthesis of (+)-(S,Sâ€S)-(cis-6-methyltetrahydropyran-2-yl)acetic acid, a component of civet. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 2385-2394.	1.3	52
177	Highly cis- or trans-selective oxygen to carbon rearrangements of anomerically linked 6-substituted tetrahydropyranyl enol ethers. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2665-2667.	0.9	15
178	A total synthesis of (+)-Goniodiol using an anomeric oxygen-to-carbon rearrangement. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3125-3126.	0.9	27
179	Anomeric Oxygen to Carbon Rearrangements of Alkynyl Tributylstannane Derivatives of Lactols. Synlett, 1998, 1998, 1091-1092.	1.8	15
180	Diastereoselective Anomeric Oxygen to Carbon Rearrangements of Silyl Enol Ether Derivatives of Lactols. Synlett, 1998, 1998, 1093-1095.	1.8	20

#	Article	IF	CITATIONS
18	A General C-Glycosidation Procedure via Anomeric Oxygen to Carbon Rearrangements of Tetrahydropyranyl Ether Derivatives. Synlett, 1997, 1997, 1055-1056.	1.8	9