Thiago Moreno L Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8240239/publications.pdf

Version: 2024-02-01

		126907	106344
96	4,973	33	65
papers	citations	h-index	g-index
123	123	123	8816
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2: Ultrastructural Characterization of Morphogenesis in an In Vitro System. Viruses, 2022, 14, 201.	3.3	15
2	Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Frontiers in Immunology, 2022, 13, 820131.	4.8	29
3	Unlike Chloroquine, Mefloquine Inhibits SARS-CoV-2 Infection in Physiologically Relevant Cells. Viruses, 2022, 14, 374.	3.3	12
4	Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Communications Biology, 2022, 5, 154.	4.4	40
5	VIP plasma levels associate with survival in severe COVID-19 patients, correlating with protective effects in SARS-CoV-2-infected cells. Journal of Leukocyte Biology, 2022, 111, 1107-1121.	3.3	15
6	Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 Mpro, Impairing Variants Replication In Vitro and In Vivo. Pharmaceuticals, 2022, 15, 21.	3.8	21
7	Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Advances, 2022, 6, 5085-5099.	5.2	32
8	Human endogenous retrovirus K in the respiratory tract is associated with COVID-19 physiopathology. Microbiome, 2022, 10, 65.	11.1	20
9	SARS-CoV-2 Molecular Epidemiology Can Be Enhanced by Occupational Health: The Experience of Monitoring Variants of Concern in Workplaces in Rio de Janeiro, Brazil. Frontiers in Medicine, 2022, 9, 862284.	2.6	2
10	The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature, 2022, 606, 761-768.	27.8	87
11	Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones. Viruses, 2022, 14, 1458.	3.3	26
12	Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discovery, 2022, 8, .	4.7	15
13	Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids. Molecular Diversity, 2021, 25, 2035-2043.	3.9	9
14	The COVID-19 pandemics and the relevance of biosafety facilities for metagenomics surveillance, structured disease prevention and control. Biosafety and Health, 2021, 3, 1-3.	2.7	13
15	Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: <i>In Vitro</i> Activity against SARS-CoV-2 and Potential Mechanisms. ACS Omega, 2021, 6, 7454-7468.	3.5	56
16	SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discovery, 2021, 7, 43.	4.7	194
17	<i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. Journal of Antimicrobial Chemotherapy, 2021, 76, 1874-1885.	3.0	65
18	Genetic Evidence and Host Immune Response in Persons Reinfected with SARS-CoV-2, Brazil. Emerging Infectious Diseases, 2021, 27, 1446-1453.	4.3	19

THIAGO MORENO L SOUZA

#	Article	IF	CITATIONS
19	Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Research, 2021, 54, 102436.	0.7	19
20	COVID-19 hospital admissions: Brazil's first and second waves compared. Lancet Respiratory Medicine,the, 2021, 9, e82-e83.	10.7	61
21	The Chemokine CCL5 Inhibits the Replication of Influenza A Virus Through SAMHD1 Modulation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 549020.	3.9	11
22	SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites. International Journal of Molecular Sciences, 2021, 22, 9035.	4.1	41
23	Polyclonal F(ab')2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. IScience, 2021, 24, 103315.	4.1	23
24	WIN 55,212-2 shows anti-inflammatory and survival properties in human iPSC-derived cardiomyocytes infected with SARS-CoV-2. PeerJ, 2021, 9, e12262.	2.0	5
25	Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating. PeerJ, 2021, 9, e12595.	2.0	5
26	Dengue virus-activated platelets modulate monocyte immunometabolic response through lipid droplet biogenesis and cytokine signaling. Journal of Leukocyte Biology, 2020, 108, 1293-1306.	3.3	17
27	Sofosbuvir shows a protective effect against vertical transmission of Zika virus and the associated congenital syndrome in rhesus monkeys. Antiviral Research, 2020, 182, 104859.	4.1	15
28	Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, 136, 1330-1341.	1.4	576
29	Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	109
30	Design, synthesis, inÂvitro and in silico studies of novel 4-oxoquinoline ribonucleoside derivatives as HIV-1 reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2020, 194, 112255.	5.5	12
31	Increased expression of CDKN1A/p21 in HIV-1 controllers is correlated with upregulation of ZC3H12A/MCPIP1. Retrovirology, 2020, 17, 18.	2.0	3
32	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathogens, 2020, 16, e1009127.	4.7	193
33	Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Current Topics in Medicinal Chemistry, 2020, 20, 111-120.	2.1	18
34	Neuraminidase from Influenza A and B Viruses is Susceptible to the Compound 4-(4-Phenyl-1H-1,2,3-Triazol-1-yl)-2,2,6,6-Tetramethylpiperidine-1- Oxyl. Current Topics in Medicinal Chemistry, 2020, 20, 132-139.	2.1	5
35	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. , 2020, 16, e1009127.		0
36	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. , 2020, 16, e1009127		0

e1009127.

#	Article	IF	CITATIONS
37	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. , 2020, 16, e1009127.		0
38	Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo. PLoS Neglected Tropical Diseases, 2019, 13, e0007072.	3.0	84
39	Differential Shedding and Antibody Kinetics of Zika and Chikungunya Viruses, Brazil. Emerging Infectious Diseases, 2019, 25, 311-315.	4.3	26
40	Emergence of the East-Central-South-African genotype of Chikungunya virus in Brazil and the city of Rio de Janeiro may have occurred years before surveillance detection. Scientific Reports, 2019, 9, 2760.	3.3	38
41	HIV controllers suppress viral replication and evolution and prevent disease progression following intersubtype HIV-1 superinfection. Aids, 2019, 33, 399-410.	2.2	6
42	Beyond Members of the <i>Flaviviridae</i> Family, Sofosbuvir Also Inhibits Chikungunya Virus Replication. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	69
43	Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature Biotechnology, 2019, 37, 160-168.	17.5	96
44	Identification of 1-Aryl-1H-1,2,3-triazoles as Potential New Antiretroviral Agents. Medicinal Chemistry, 2018, 14, 242-248.	1.5	9
45	An observational clinical case of Zika virus-associated neurological disease is associated with primary IgG response and enhanced TNF levels. Journal of General Virology, 2018, 99, 913-916.	2.9	11
46	New Efavirenz Derivatives and 1,2,3-Triazolyl-phosphonates as Inhibitors of Reverse Transcriptase of HIV-1. Current Topics in Medicinal Chemistry, 2018, 18, 1494-1505.	2.1	8
47	Inhibitory effect of microalgae and cyanobacteria extracts on influenza virus replication and neuraminidase activity. PeerJ, 2018, 6, e5716.	2.0	29
48	Influenza virus RNA polymerase may be activated inside the virion. Journal of General Virology, 2018, 99, 1608-1613.	2.9	0
49	The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Scientific Reports, 2017, 7, 40920.	3.3	167
50	N -(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives, synthesized by thermal and ultrasonic means, are endowed with anti-Zika virus activity. European Journal of Medicinal Chemistry, 2017, 127, 434-441.	5.5	21
51	Development of standard methods for Zika virus propagation, titration, and purification. Journal of Virological Methods, 2017, 246, 65-74.	2.1	58
52	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	27.8	323
53	2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. European Journal of Medicinal Chemistry, 2017, 127, 334-340.	5.5	49
54	Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Science Translational Medicine, 2017, 9, .	12.4	148

THIAGO MORENO L SOUZA

#	Article	IF	CITATIONS
55	Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Scientific Reports, 2017, 7, 9409.	3.3	87
56	Detection of Zika Virus in April 2013 Patient Samples, Rio de Janeiro, Brazil. Emerging Infectious Diseases, 2017, 23, 2120-2121.	4.3	27
57	Clinical Manifestations of Zika Virus Infection, Rio de Janeiro, Brazil, 2015. Emerging Infectious Diseases, 2016, 22, 1318-1320.	4.3	77
58	Active syndromic surveillance program of arboviruses in Rio de Janeiro, Brazil. International Journal of Infectious Diseases, 2016, 53, 140.	3.3	0
59	Impact of neuraminidase inhibitors on influenza A(H1N1)pdm09â€related pneumonia: an individual participant data metaâ€analysis. Influenza and Other Respiratory Viruses, 2016, 10, 192-204.	3.4	54
60	Immunogenicity and sustainability of the immune response in Brazilian HIVâ€1â€infected individuals vaccinated with inactivated triple influenza vaccine. Journal of Medical Virology, 2016, 88, 426-436.	5.0	3
61	Oseltamivir-resistant influenza A(H1N1)pdm2009 strains found in Brazil are endowed with permissive mutations, which compensate the loss of fitness imposed by antiviral resistance. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 101-105.	1.6	10
62	Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice. PLoS ONE, 2015, 10, e0128785.	2.5	11
63	Aureonitol, a Fungi-Derived Tetrahydrofuran, Inhibits Influenza Replication by Targeting Its Surface Glycoprotein Hemagglutinin. PLoS ONE, 2015, 10, e0139236.	2.5	23
64	1,2,3-Triazolyl-4-oxoquinolines: A feasible beginning for promising chemical structures to inhibit oseltamivir-resistant influenza A and B viruses. Bioorganic and Medicinal Chemistry, 2015, 23, 7777-7784.	3.0	12
65	Molecular findings from influenza A(H1N1)pdm09 detected in patients from a Brazilian equatorial region during the pandemic period. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 912-917.	1.6	7
66	The Effects of Neurotrophins and the Neuropeptides VIP and PACAP on HIV-1 Infection: Histories with Opposite Ends. NeuroImmunoModulation, 2014, 21, 268-282.	1.8	9
67	Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respiratory Medicine,the, 2014, 2, 395-404.	10.7	527
68	Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Medicinal Chemistry Research, 2014, 23, 1501-1511.	2.4	102
69	Polymorphisms at Residue 222 of the Hemagglutinin of Pandemic Influenza A(H1N1)pdm09: Association of Quasi-Species to Morbidity and Mortality in Different Risk Categories. PLoS ONE, 2014, 9, e92789.	2.5	15
70	Detection of the Influenza A(H1N1)pdm09 Virus Carrying the K-15E, P83S and Q293H Mutations in Patients Who Have Undergone Bone Marrow Transplant. PLoS ONE, 2014, 9, e94822.	2.5	2
71	HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an IFITM3-Dependent Fashion. PLoS ONE, 2014, 9, e101056.	2.5	9
72	Detection of Oseltamivir-Resistant Pandemic Influenza A(H1N1)pdm2009 in Brazil: Can Community Transmission Be Ruled Out?. PLoS ONE, 2013, 8, e80081.	2.5	21

#	Article	IF	CITATIONS
73	Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1198-1206.	3.8	78
74	H1N1pdm09 Adjuvanted Vaccination in HIV-Infected Adults: A Randomized Trial of Two Single versus Two Double Doses. PLoS ONE, 2012, 7, e39310.	2.5	8
75	Synthesis and anti-HSV-1 evaluation of new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines. Organic and Medicinal Chemistry Letters, 2012, 2, 3.	2.0	22
76	Antiviral resistance surveillance for influenza A virus in Brazil: investigation on 2009 pandemic influenza A (H1N1) resistance to oseltamivir. Diagnostic Microbiology and Infectious Disease, 2011, 71, 98-99.	1.8	8
77	The nerve growth factor reduces APOBEC3G synthesis and enhances HIV-1 transcription and replication in human primary macrophages. Blood, 2011, 117, 2944-2952.	1.4	18
78	Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorganic and Medicinal Chemistry, 2011, 19, 1860-1865.	3.0	70
79	H1N1pdm Influenza Infection in Hospitalized Cancer Patients: Clinical Evolution and Viral Analysis. PLoS ONE, 2010, 5, e14158.	2.5	34
80	The Effects of the Diterpenes Isolated from the Brazilian Brown Algae <i>Dictyota pfaffii</i> and <i>Dictyota menstrualis</i> against the Herpes Simplex Type-1 Replicative Cycle. Planta Medica, 2010, 76, 339-344.	1.3	61
81	Promising novel compounds for the generation of new anti-HIV-RT therapeutic drugs. HIV Therapy, 2009, 3, 255-267.	0.6	0
82	Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. European Journal of Medicinal Chemistry, 2009, 44, 373-383.	5.5	201
83	Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorganic and Medicinal Chemistry, 2009, 17, 5476-5481.	3.0	36
84	Characterization of HIV-1 Enzyme Reverse Transcriptase Inhibition by the Compound 6-Chloro-1,4-Dihydro-4-Oxo-1-(β-D-Ribofuranosyl) Quinoline-3-Carboxylic Acid Through Kinetic and In Silico Studies. Current HIV Research, 2009, 7, 327-335.	0.5	11
85	SAR of a series of anti-HSV-1 acridone derivatives, and a rational acridone-based design of a new anti-HSV-1 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridine series. Bioorganic and Medicinal Chemistry, 2008, 16, 313-321.	3.0	46
86	The dolabellane diterpene Dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antiviral Research, 2008, 77, 64-71.	4.1	71
87	Inhibition of HSV-1 replication and HSV DNA polymerase by the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(β-d-ribofuranosyl) quinoline-3-carboxylic acid and its aglycone. Antiviral Research, 2008, 77, 20-27.	4.1	23
88	The Compound 6-Chloro-1,4-Dihydro-4-Oxo-1-(β-D-Ribofuranosyl) Quinoline-3-Carboxylic Acid Inhibits HIV-1 Replication by Targeting the Enzyme Reverse Transcriptase. Current HIV Research, 2008, 6, 209-217.	0.5	13
89	Synthesis and Anti-HSV-1 Activity of 1,4-dihydro-4-oxoquinoline Ribonucleosides. Letters in Drug Design and Discovery, 2007, 4, 404-409.	0.7	17
90	The Alkaloid 4-Methylaaptamine Isolated from the Sponge Aaptos aaptos Impairs Herpes simplex Virus Type 1 Penetration and Immediate-Early Protein Synthesis. Planta Medica, 2007, 73, 200-205.	1.3	46

#	Article	IF	CITATIONS
91	<i>In vitro</i> Antiviral Effect of Meroditerpenes Isolated from the Brazilian Seaweed <i>Stypopodium zonale</i> (Dictyotales). Planta Medica, 2007, 73, 1221-1224.	1.3	36
92	Design, synthesis, and biological evaluation of new 3-hydroxy-2-oxo-3-trifluoromethylindole as potential HIV-1 reverse transcriptase inhibitors. Medicinal Chemistry Research, 2007, 15, 492-510.	2.4	27
93	The chloroxoquinolinic derivative 6-chloro-1,4-dihydro-4-oxo-1-(β-D-ribofuranosyl) quinoline-3-carboxylic acid inhibits HSV-1 adsorption by impairing its adsorption on HVEM. Archives of Virology, 2007, 152, 1417-1424.	2.1	9
94	SYNTHESIS AND ANTIVIRAL ACTIVITY OF NEW 4- (PHENYLAMINO)THIENO[2,3-b]PYRIDINE DERIVATIVES. Heterocyclic Communications, 2004, 10, .	1.2	14
95	Anti HSV-1 Alkaloids from a Feeding Deterrent Marine Sponge of the Genus Aaptos. Heterocycles, 2002, 57, 1265.	0.7	30
96	Immunogenicity of SARS-CoV-2 Trimeric Spike Protein Associated to Poly(I:C) Plus Alum. Frontiers in Immunology, 0, 13, .	4.8	3