Shu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8240034/publications.pdf

Version: 2024-02-01

		687363	940533
16	823	13	16
papers	citations	h-index	g-index
17	17	17	1346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction. Journal of Leukocyte Biology, 2021, 111, 261-267.	3.3	13
2	Human Dermcidin Protects Mice Against Hepatic Ischemia-Reperfusion–Induced Local and Remote Inflammatory Injury. Frontiers in Immunology, 2021, 12, 821154.	4.8	4
3	Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Science Translational Medicine, 2020, 12, .	12.4	34
4	Enhanced Macrophage Pannexin 1 Expression and Hemichannel Activation Exacerbates Lethal Experimental Sepsis. Scientific Reports, 2019, 9, 160.	3.3	30
5	Connexin 43 Hemichannel as a Novel Mediator of Sterile and Infectious Inflammatory Diseases. Scientific Reports, 2018, 8, 166.	3.3	50
6	Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight, 2016, 1, .	5.0	112
7	High-Density Lipoprotein (HDL) Counter-Regulates Serum Amyloid A (SAA)-Induced sPLA2-IIE and sPLA2-V Expression in Macrophages. PLoS ONE, 2016, 11, e0167468.	2.5	24
8	Novel Mechanisms of Herbal Therapies for Inhibiting HMGB1 Secretion or Action. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-11.	1.2	24
9	Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Molecular Medicine, 2015, 21, 515-525.	4.4	29
10	EGCG induces G-CSF expression and neutrophilia in experimental sepsis. Immunologic Research, 2015, 63, 144-152.	2.9	4
11	It Is Not Just Folklore: The Aqueous Extract of Mung Bean Coat Is Protective against Sepsis. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-10.	1.2	30
12	Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochemical Pharmacology, 2012, 84, 1492-1500.	4.4	48
13	A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation. PLoS ONE, 2011, 6, e16945.	2.5	131
14	EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology, 2011, 81, 1152-1163.	4.4	145
15	High Mobility Group Box 1 Protein as a Potential Drug Target for Infection- and Injury-Elicited Inflammation. Inflammation and Allergy: Drug Targets, 2010, 9, 60-72.	1.8	52
16	Spermine Protects Mice Against Lethal Sepsis Partly by Attenuating Surrogate Inflammatory Markers. Molecular Medicine, 2009, 15, 275-282.	4.4	91