Nora A Barrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8239994/publications.pdf Version: 2024-02-01

		279798	434195
32	4,612	23	31
papers	citations	h-index	g-index
33	33	33	9632
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Protecting tissue integrity and enteric function: the case for type 2 inflammation and macrophages. Trends in Parasitology, 2022, 38, 191-192.	3.3	0
2	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell, 2022, 185, 614-629.e21.	28.9	40
3	Single-cell RNA sequencing of mast cells in eosinophilic esophagitis reveals heterogeneity, local proliferation, and activation that persists in remission. Journal of Allergy and Clinical Immunology, 2022, 149, 2062-2077.	2.9	37
4	Leukotriene D4 paradoxically limits LTC4-driven platelet activation and lung immunopathology. Journal of Allergy and Clinical Immunology, 2021, 148, 195-208.e5.	2.9	7
5	Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	42
6	Isolation of Nasal Brush Cells for Single-cell Preparations. Bio-protocol, 2021, 11, e4163.	0.4	3
7	Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Science Immunology, 2021, 6, .	11.9	79
8	Epithelial dysregulation in chronic rhinosinusitis with nasal polyposis (CRSwNP) and aspirin-exacerbated respiratory disease (AERD). Journal of Allergy and Clinical Immunology, 2021, 148, 1161-1164.	2.9	3
9	Tuft cell–produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Science Immunology, 2021, 6, eabj0474.	11.9	48
10	Tuft-Cell-Derived Leukotrienes Drive Rapid Anti-helminth Immunity in the Small Intestine but Are Dispensable for Anti-protist Immunity. Immunity, 2020, 52, 528-541.e7.	14.3	135
11	IL-5Rα marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2020, 145, 1574-1584.	2.9	55
12	Epithelial cell function and remodeling in nasalÂpolyposis. Annals of Allergy, Asthma and Immunology, 2020, 124, 333-341.	1.0	24
13	Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Science Immunology, 2020, 5, .	11.9	76
14	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	28.9	1,956
15	Isolation and Quantitative Evaluation of Brush Cells from Mouse Tracheas. Journal of Visualized Experiments, 2019, , .	0.3	6
16	Revisiting airway epithelial remodeling in type 2 immunity: Beyond goblet cell metaplasia. Journal of Allergy and Clinical Immunology, 2019, 144, 1158-1160.	2.9	6
17	Cysteinyl leukotriene receptor 2 drives lung immunopathology through a platelet and high mobility box 1-dependent mechanism. Mucosal Immunology, 2019, 12, 679-690.	6.0	20
18	Type 2 Cysteinyl Leukotriene Receptors Drive IL-33–Dependent Type 2 Immunopathology and Aspirin Sensitivity. Journal of Immunology, 2018, 200, 915-927.	0.8	51

NORA A BARRETT

#	Article	IF	CITATIONS
19	The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–producing airway brush cells leading to type 2 inflammation. Science Immunology, 2018, 3, .	11.9	125
20	Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature, 2018, 560, 649-654.	27.8	368
21	Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. Journal of Experimental Medicine, 2017, 214, 27-37.	8.5	132
22	Phosphoinositide 3-Kinase δ Regulates Dectin-2 Signaling and the Generation of Th2 and Th17 Immunity. Journal of Immunology, 2016, 197, 278-287.	0.8	12
23	Leukotriene E ₄ elicits respiratory epithelial cell mucin release through the G-protein–coupled receptor, GPR99. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6242-6247.	7.1	99
24	Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nature Immunology, 2016, 17, 878-887.	14.5	293
25	Safety, Costs, and Efficacy of Rapid Drug Desensitizations to Chemotherapy and Monoclonal Antibodies. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 497-504.	3.8	156
26	Aspirin-Exacerbated Respiratory Disease Involves a Cysteinyl Leukotriene–Driven IL-33–Mediated Mast Cell Activation Pathway. Journal of Immunology, 2015, 195, 3537-3545.	0.8	103
27	Signaling through FcRγ-associated receptors on dendritic cells drives IL-33–dependent TH2-type responses. Journal of Allergy and Clinical Immunology, 2014, 134, 706-713.e8.	2.9	49
28	Alcohol-induced Respiratory Symptoms Are Common in Patients With Aspirin Exacerbated Respiratory Disease. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 208-213.e2.	3.8	71
29	Cysteinyl Leukotriene 2 Receptor on Dendritic Cells Negatively Regulates Ligand-Dependent Allergic Pulmonary Inflammation. Journal of Immunology, 2012, 189, 4556-4565.	0.8	32
30	Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. Journal of Experimental Medicine, 2011, 208, 593-604.	8.5	177
31	Innate Cells and T Helper 2 Cell Immunity in Airway Inflammation. Immunity, 2009, 31, 425-437.	14.3	192
32	Dectin-2 Recognition of House Dust Mite Triggers Cysteinyl Leukotriene Generation by Dendritic Cells. Journal of Immunology, 2009, 182, 1119-1128.	0.8	215