Luiz F Barella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8239737/publications.pdf

Version: 2024-02-01

361413 501196 54 987 20 28 citations h-index g-index papers 55 55 55 1275 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	\hat{l}^2 -Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annual Review of Physiology, 2022, 84, 17-40.	13.1	14
2	InÂvivo metabolic effects after acute activation of skeletal muscle Gs signaling. Molecular Metabolism, 2022, 55, 101415.	6.5	5
3	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	12.8	15
4	\hat{I}^2 -Arrestins as regulators of key metabolic processes. , 2022, , 69-85.		0
5	Editorial: Endocrine Disruption in Light of Dohad: The Challenges of Contaminants of Emerging Concern in Food and Water. Frontiers in Endocrinology, 2022, 13, 898736.	3.5	O
6	Small Molecule-mediated Insulin Hypersecretion Induces Transient ER Stress Response and Loss of Beta Cell Function. Endocrinology, 2022, 163, .	2.8	2
7	Key Metabolic Functions of \hat{l}^2 -Arrestins: Studies with Novel Mouse Models. Trends in Endocrinology and Metabolism, 2021, 32, 118-129.	7.1	7
8	Metabolic roles of G proteinâ€coupled receptor signaling in obesity and type 2 diabetes. FEBS Journal, 2021, 288, 2622-2644.	4.7	25
9	Metformin Improves Autonomic Nervous System Imbalance and Metabolic Dysfunction in Monosodium L-Glutamate-Treated Rats. Frontiers in Endocrinology, 2021, 12, 660793.	3.5	6
10	\hat{l}^2 -Arrestin-1 is required for adaptive \hat{l}^2 -cell mass expansion during obesity. Nature Communications, 2021, 12, 3385.	12.8	13
11	Adenosine A1 receptor is dispensable for hepatocyte glucose metabolism and insulin sensitivity. Biochemical Pharmacology, 2021, 192, 114739.	4.4	3
12	Gq signaling in \hat{l}_{\pm} cells is critical for maintaining euglycemia. JCI Insight, 2021, 6, .	5.0	11
13	Chronic leucine supplementation does not prevent the obesity and metabolic abnormalities induced by monosodium glutamate. Clinical Nutrition Experimental, 2020, 29, 62-75.	2.0	4
14	Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nature Communications, 2020, 11, 2995.	12.8	27
15	Beneficial metabolic role of β-arrestin-1 expressed by AgRP neurons. Science Advances, 2020, 6, eaaz1341.	10.3	17
16	\hat{l}^2 -arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. Science Advances, 2020, 6, eaba1733.	10.3	15
17	Cholinergic-pathway-weakness-associated pancreatic islet dysfunction: a low-protein-diet imprint effect on weaned rat offspring. Journal of Developmental Origins of Health and Disease, 2020, 11, 484-491.	1.4	4
18	Novel metabolic role for BDNF in pancreatic \hat{I}^2 -cell insulin secretion. Nature Communications, 2020, 11, 1950.	12.8	59

#	Article	IF	Citations
19	2129-P: Glucagon Secretion from Pancreatic Islets Is Regulated by Beta-Arrestin-1. Diabetes, 2020, 69, .	0.6	0
20	1694-P: Beta-Arrestin 1 Suppresses Myogenic Reprogramming of Brown Fat to Maintain Euglycemia. Diabetes, 2020, 69, 1694-P.	0.6	0
21	Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight, 2019, 4, .	5.0	102
22	β Cell–intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion. Journal of Clinical Investigation, 2019, 129, 3732-3737.	8.2	32
23	Low-protein diet in puberty impairs testosterone output and energy metabolism in male rats. Journal of Endocrinology, 2018, 237, 243-254.	2.6	22
24	Methylglyoxal treatment in lactating mothers leads to type 2 diabetes phenotype in male rat offspring at adulthood. European Journal of Nutrition, 2018, 57, 477-486.	3.9	20
25	Sympathetic innervation is essential for metabolic homeostasis and pancreatic beta cell function in adult rats. Molecular and Cellular Endocrinology, 2018, 462, 119-126.	3.2	9
26	Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats. Endocrine, 2017, 55, 101-112.	2.3	24
27	Glibenclamide treatment blocks metabolic dysfunctions and improves vagal activity in monosodium glutamate-obese male rats. Endocrine, 2017, 56, 346-356.	2.3	4
28	Mechanisms of Programming: Pancreatic Islets and Fetal Programming. , 2017, , 517-528.		0
29	Chronic Glibenclamide Treatment Attenuates Walker-256 Tumour Growth in Prediabetic Obese Rats. Cellular Physiology and Biochemistry, 2017, 42, 81-90.	1.6	9
30	Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabo Dysfunction in MSG-Induced Obese Mice. International Journal of Endocrinology, 2016, 2016, 1-10.	lic 1.5	10
31	Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring. Endocrinology, 2016, 157, 1799-1812.	2.8	38
32	HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats. Journal of Endocrinology, 2016, 230, 27-38.	2.6	29
33	Acephate exposure during a perinatal life program to type 2 diabetes. Toxicology, 2016, 372, 12-21.	4.2	30
34	Protein-energy malnutrition at mid-adulthood does not imprint long-term metabolic consequences in male rats. European Journal of Nutrition, 2016, 55, 1423-1433.	3.9	13
35	Vagus nerve contributes to metabolic syndrome in highâ€fat dietâ€fed young and adult rats. Experimental Physiology, 2015, 100, 57-68.	2.0	22
36	CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6818-24.	7.1	27

#	Article	IF	Citations
37	Short-term moderate exercise provides long-lasting protective effects against metabolic dysfunction in rats fed a high-fat diet. European Journal of Nutrition, 2015, 54, 1353-1362.	3.9	11
38	Early treatment with metformin induces resistance against tumor growth in adult rats. Cancer Biology and Therapy, 2015, 16, 958-964.	3.4	4
39	Impaired \hat{l}^2 -cell function in the adult offspring of rats fed a protein-restricted diet during lactation is associated with changes in muscarinic acetylcholine receptor subtypes. British Journal of Nutrition, 2014, 111, 227-235.	2.3	15
40	Acute Exposure to a Precursor of Advanced Glycation End Products Induces a Dual Effect on the Rat Pancreatic Islet Function. International Journal of Endocrinology, 2014, 2014, 1-6.	1.5	12
41	Low-protein diet in adult male rats has long-term effects on metabolism. Journal of Endocrinology, 2014, 221, 285-295.	2.6	26
42	Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat. Journal of Developmental Origins of Health and Disease, 2014, 5, 109-120.	1.4	23
43	Protective Effect of Metformin Against Walker 256 Tumor Growth is Not Dependent on Metabolism Improvement. Cellular Physiology and Biochemistry, 2014, 34, 1920-1932.	1.6	12
44	Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. European Journal of Nutrition, 2014, 53, 711-722.	3.9	55
45	Pancreatic islets and their roles in metabolic programming. Nutrition, 2014, 30, 373-379.	2.4	16
46	Insulin Oversecretion in MSG-Obese Rats is Related to Alterations in Cholinergic Muscarinic Receptor Subtypes in Pancreatic Islets. Cellular Physiology and Biochemistry, 2014, 33, 1075-1086.	1.6	30
47	Low-intensity and moderate exercise training improves autonomic nervous system activity imbalanced by postnatal early overfeeding in rats. Journal of the International Society of Sports Nutrition, 2014, 11, 25.	3.9	12
48	Impaired muscarinic type 3 (M3) receptor/PKC and PKA pathways in islets from MSG-obese rats. Molecular Biology Reports, 2013, 40, 4521-4528.	2.3	19
49	Swim training of monosodium l-glutamate-obese mice improves the impaired insulin receptor tyrosine phosphorylation in pancreatic islets. Endocrine, 2013, 43, 571-578.	2.3	11
50	An increase in glucose concentration in the lateral ventricles of the brain induces changes in autonomic nervous system activity. Neurological Research, 2013, 35, 15-21.	1.3	8
51	Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. Journal of Endocrinology, 2013, 216, 195-206.	2.6	46
52	Moderate Exercise Restores Pancreatic Beta-Cell Function and Autonomic Nervous System Activity in Obese Rats Induced by High-Fat Diet. Cellular Physiology and Biochemistry, 2013, 32, 310-321.	1.6	28
53	Early Exposure to a High-Fat Diet has more Drastic Consequences on Metabolism Compared with Exposure During Adulthood in Rats. Hormone and Metabolic Research, 2012, 44, 458-464.	1.5	35
54	Maternal Protein Malnutrition Does Not Impair Insulin Secretion from Pancreatic Islets of Offspring after Transplantation into Diabetic Rats. PLoS ONE, 2012, 7, e30685.	2.5	6