Shannon L Maude

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8239486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
2	Next-Generation Sequencing of Minimal Residual Disease for Predicting Relapse after Tisagenlecleucel in Children and Young Adults with Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2022, 3, 66-81.	5.0	70
3	Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CARÂT-cell therapy. Blood, 2022, 139, 2173-2185.	1.4	39
4	Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. European Journal of Cancer, 2022, 164, 1-17.	2.8	24
5	PSMA-targeting TGFÎ2-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	30.7	171
6	Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nature Reviews Clinical Oncology, 2022, 19, 342-355.	27.6	113
7	Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Advances, 2022, 6, 3398-3403.	5.2	17
8	Potential Role of IFNÎ ³ Inhibition in Refractory Cytokine Release Syndrome Associated with CAR T-cell Therapy. Blood Cancer Discovery, 2022, 3, 90-94.	5.0	23
9	Tisagenlecleucel in pediatric and young adult patients with Down syndrome-associated relapsed/refractory acute lymphoblastic leukemia. Leukemia, 2022, 36, 1508-1515.	7.2	21
10	Impact of socioeconomic status on survival after CD19 CART therapy Journal of Clinical Oncology, 2022, 40, 7013-7013.	1.6	0
11	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	7.0	17
12	Statistical Considerations for Analyses of Time-To-Event Endpoints in Oncology Clinical Trials: Illustrations with CAR-T Immunotherapy Studies. Clinical Cancer Research, 2022, 28, 3940-3949.	7.0	4
13	Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. Journal of Clinical Oncology, 2021, 39, 920-930.	1.6	110
14	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	30.7	88
15	Absolute lymphocyte count proliferation kinetics after CAR T-cell infusion impact response and relapse. Blood Advances, 2021, 5, 2128-2136.	5.2	26
16	Tisagenlecleucel immunogenicity in relapsed/refractory acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Blood Advances, 2021, 5, 4980-4991.	5.2	12
17	Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia. , 2021, 9, e002287.		24
18	Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3044-3055.	1.6	94

#	Article	IF	CITATIONS
19	CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematology,the, 2021, 8, e711-e722.	4.6	57
20	A Phase 1/2 Dose-Escalation and Dose-Expansion Study of the Safety and Efficacy of Anti-CD7 Allogeneic CAR-T Cells (WU-CART-007) in Patients with Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia (T-ALL)/ Lymphoblastic Lymphoma (LBL). Blood, 2021, 138, 4829-4829.	1.4	6
21	Outcomes after Reinfusion of CD19-Specific Chimeric Antigen Receptor (CAR)-Modified T Cells in Children and Young Adults with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. Blood, 2021, 138, 474-474.	1.4	11
22	Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2020, 38, 415-422.	1.6	162
23	Subcutaneous immunoglobulin replacement following CD19â€specific chimeric antigen receptor Tâ€cell therapy for Bâ€cell acute lymphoblastic leukemia in pediatric patients. Pediatric Blood and Cancer, 2020, 67, e28092.	1.5	29
24	CAR T cells vs allogeneic HSCT for poor-risk ALL. Hematology American Society of Hematology Education Program, 2020, 2020, 501-507.	2.5	9
25	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	5.2	30
26	How the COG is Approaching the High-Risk Patient with ALL: Incorporation of Immunotherapy into Frontline Treatment. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S8-S11.	0.4	3
27	Delayed cancer diagnoses and high mortality in children during the COVIDâ€19 pandemic. Pediatric Blood and Cancer, 2020, 67, e28427.	1.5	61
28	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	9.4	184
29	Cutting to the Front of the Line: Immunotherapy for Childhood Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e132-e143.	3.8	15
30	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. , 2020, 8, e001511.		138
31	Evidence-Based Minireview: What is the role for HSCT or immunotherapy in pediatric hypodiploid B-cell acute lymphoblastic leukemia?. Hematology American Society of Hematology Education Program, 2020, 2020, 508-511.	2.5	4
32	CD19-targeted chimeric antigen receptor (CAR) T cells in CNS relapsed acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2020, 38, 10511-10511.	1.6	15
33	A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2020, 38, TPS269-TPS269.	1.6	4
34	Bianca: Phase II, single-arm, global trial to determine efficacy and safety of tisagenlecleucel in pediatric/young adult (YA) patients (Pts) with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R) Tj ETQqO	0 0 1g BT /C	Dverlock 10 Tf
35	CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition. PLoS ONE, 2019, 14, e0220026.	2.5	16

CAR T cell viability release testing and clinical outcomes: is there a lower limit?. Blood, 2019, 134, 1.4 24 1873-1875.

Shannon L Maude

#	Article	IF	CITATIONS
37	CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Advances, 2019, 3, 3539-3549.	5.2	145
38	Chimeric Antigen Receptor Tâ€Cell Therapy Clinical Results in Pediatric and Young Adult Bâ€ALL. HemaSphere, 2019, 3, e279.	2.7	20
39	CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. Journal of Clinical Investigation, 2019, 130, 673-685.	8.2	78
40	Trends in Inpatient and Intensive Care Resource Utilization after Chimeric Antigen Receptor T Cell Therapy for Pediatric Acute Lymphoblastic Leukemia from 2012-2019. Blood, 2019, 134, 61-61.	1.4	3
41	A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2019, 37, TPS347-TPS347.	1.6	28
42	Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 439-448.	27.0	3,680
43	Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood, 2018, 131, 995-999.	1.4	170
44	New developments in immunotherapy for pediatric leukemia. Current Opinion in Pediatrics, 2018, 30, 25-29.	2.0	23
45	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
46	Neurotoxicity after CTL019 in a pediatric and young adult cohort. Annals of Neurology, 2018, 84, 537-546.	5.3	82
47	Clinical Pharmacology of Tisagenlecleucel in B-cell Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2018, 24, 6175-6184.	7.0	170
48	Cardiac Profile of Chimeric Antigen Receptor T Cell Therapy in Children: A Single-Institution Experience. Biology of Blood and Marrow Transplantation, 2018, 24, 1590-1595.	2.0	100
49	False-positive results with select HIV-1 NAT methods following lentivirus-based tisagenlecleucel therapy. Blood, 2018, 131, 2596-2598.	1.4	18
50	Tisagenlecleucel for the treatment of B-cell acute lymphoblastic leukemia. Expert Review of Anticancer Therapy, 2018, 18, 959-971.	2.4	19
51	Checkpoint Inhibitors Augment CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood, 2018, 132, 556-556.	1.4	106
52	Updated Analysis of the Efficacy and Safety of Tisagenlecleucel in Pediatric and Young Adult Patients with Relapsed/Refractory (r/r) Acute Lymphoblastic Leukemia. Blood, 2018, 132, 895-895.	1.4	70
53	High Vs. Low-Intensity Bridging Chemotherapy in Children with Acute Lymphoblastic Leukemia Awaiting Chimeric Antigen Receptor T-Cell Therapy: A Population-Based Study from Ontario, Canada. Blood, 2018, 132, 1410-1410.	1.4	5
54	Immunogenicity of tisagenlecleucel in relapsed/ refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) patients Journal of Clinical Oncology, 2018, 36, 3044-3044.	1.6	3

Shannon L Maude

#	Article	IF	CITATIONS
55	Correlation of pre-CAR CD19 expression with responses and relapses after CAR T cell therapy Journal of Clinical Oncology, 2018, 36, 3051-3051.	1.6	3
56	Future directions in chimeric antigen receptor T cell therapy. Current Opinion in Pediatrics, 2017, 29, 27-33.	2.0	16
57	Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood, 2017, 130, 2317-2325.	1.4	273
58	CART attack. Blood, 2017, 130, 229-229.	1.4	5
59	CAR emissions: cytokines tell the story. Blood, 2017, 130, 2238-2240.	1.4	10
60	Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. American Journal of Hematology, 2017, 92, E11-E13.	4.1	78
61	The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2017, 35, 103-103.	1.6	80
62	Effect of chimeric antigen receptor-modified T (CAR-T) cells on responses in children with non-CNS extramedullary relapse of CD19+ acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2017, 35, 10507-10507.	1.6	16
63	Cardiac effects of chimeric antigen receptor (CAR) T-cell therapy in children Journal of Clinical Oncology, 2017, 35, 10531-10531.	1.6	2
64	Gene expression signatures of response to anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in patients with CLL and ALL Journal of Clinical Oncology, 2017, 35, 137-137.	1.6	1
65	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	9.4	811
66	CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia. Current Treatment Options in Oncology, 2016, 17, 28.	3.0	60
67	Current status of chimeric antigen receptor therapy for haematological malignancies. British Journal of Haematology, 2016, 172, 11-22.	2.5	70
68	Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood, 2016, 128, 360-370.	1.4	190
69	Efficacy and Safety of CTL019 in the First US Phase II Multicenter Trial in Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of an Interim Analysis. Blood, 2016, 128, 2801-2801.	1.4	58
70	Cars in Leukemia: Relapse with Antigen-Negative Leukemia Originating from a Single B Cell Expressing the Leukemia-Targeting CAR. Blood, 2016, 128, 281-281.	1.4	16
71	Efficacy of humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in children with relapsed ALL Journal of Clinical Oncology, 2016, 34, 3007-3007.	1.6	17
72	Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL Journal of Clinical Oncology, 2016, 34, 3011-3011.	1.6	98

SHANNON L MAUDE

#	Article	IF	CITATIONS
73	Optimizing chimeric antigen receptor (CAR) T cell therapy for adult patients with relapsed or refractory (r/r) acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2016, 34, 7002-7002.	1.6	32
74	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	1.4	110
75	CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood, 2015, 125, 4017-4023.	1.4	598
76	Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125, 1759-1767.	1.4	189
77	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
78	Biomarkers Accurately Predict Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Acute Lymphoblastic Leukemia (ALL). Blood, 2015, 126, 1334-1334.	1.4	5
79	Efficient Trafficking of Chimeric Antigen Receptor (CAR)-Modified T Cells to CSF and Induction of Durable CNS Remissions in Children with CNS/Combined Relapsed/Refractory ALL. Blood, 2015, 126, 3769-3769.	1.4	40
80	Efficacy and Safety of Humanized Chimeric Antigen Receptor (CAR)-Modified T Cells Targeting CD19 in Children with Relapsed/Refractory ALL. Blood, 2015, 126, 683-683.	1.4	22
81	Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies. Cancer Journal (Sudbury, Mass), 2014, 20, 119-122.	2.0	624
82	Outcome of Pediatric Acute Myeloid Leukemia Patients Receiving Intensive Care in the United States. Pediatric Critical Care Medicine, 2014, 15, 112-120.	0.5	48
83	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	27.0	4,444
84	Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Relapsed/Refractory (R/R) CLL. Blood, 2014, 124, 1983-1983.	1.4	6
85	Refractory Cytokine Release Syndrome in Recipients of Chimeric Antigen Receptor (CAR) T Cells. Blood, 2014, 124, 2296-2296.	1.4	37
86	T Cells Engineered with a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Have Long Term Persistence and Induce Durable Remissions in Children with Relapsed, Refractory ALL. Blood, 2014, 124, 380-380.	1.4	14
87	T Cells Engineered With a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Produce Significant In Vivo Proliferation, Complete Responses and Long-Term Persistence Without Gvhd In Children and Adults With Relapsed, Refractory ALL. Blood, 2013, 122, 67-67.	1.4	17
88	Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.	1.4	263
89	In vivo monitoring of JAK/STAT and PI3K/mTOR signal transduction inhibition in pediatric CRLF2-rearranged acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2012, 30, 9506-9506.	1.6	0
90	Targeting mTOR and JAK2 in Xenograft Models of CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL). Blood, 2011, 118, 249-249.	1.4	1

#	Article	IF	CITATIONS
91	Cdk inhibition in human cells compromises chk1 function and activates a DNA damage response. Cancer Research, 2005, 65, 780-6.	0.9	44