
Ammad Ahmad Farooqi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8238923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryptocaryone Promotes ROS-Dependent Antiproliferation and Apoptosis in Ovarian Cancer Cells. Cells, 2022, 11, 641.	4.1	5
2	Antiproliferation- and Apoptosis-Inducible Effects of a Novel Nitrated [6,6,6]Tricycle Derivative (SK2) on Oral Cancer Cells. Molecules, 2022, 27, 1576.	3.8	4
3	Regulation of Cell-Signaling Pathways by Berbamine in Different Cancers. International Journal of Molecular Sciences, 2022, 23, 2758.	4.1	6
4	Ag/Au Bimetallic Nanoparticles Trigger Different Cell Death Pathways and Affect Damage Associated Molecular Pattern Release in Human Cell Lines. Cancers, 2022, 14, 1546.	3.7	18
5	Combined Treatment with Cryptocaryone and Ultraviolet C Promotes Antiproliferation and Apoptosis of Oral Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 2981.	4.1	2
6	Endometrial Cancer and BRCA Mutations: A Systematic Review. Journal of Clinical Medicine, 2022, 11, 3114.	2.4	5
7	Nanomedicine for the Delivery of RNA in Cancer. Cancers, 2022, 14, 2677.	3.7	5
8	Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone. International Journal of Molecular Sciences, 2022, 23, 6311.	4.1	3
9	NAD Precursors, Mitochondria Targeting Compounds and ADP-Ribosylation Inhibitors in Treatment of Inflammatory Diseases and Cancer. Current Medicinal Chemistry, 2021, 28, 8453-8479.	2.4	5
10	Gut Microbiota in Lung Cancer: Where Do We Stand?. International Journal of Molecular Sciences, 2021, 22, 10429.	4.1	23
11	Methanol Extract of Usnea barbata Induces Cell Killing, Apoptosis, and DNA Damage against Oral Cancer Cells through Oxidative Stress. Antioxidants, 2020, 9, 694.	5.1	26
12	The Prowess of Andrographolide as a Natural Weapon in the War against Cancer. Cancers, 2020, 12, 2159.	3.7	23
13	Recent updates on true potential of an anesthetic agent as a regulator of cell signaling pathways and non-coding RNAs in different cancers: Focusing on the brighter side of propofol. Gene, 2020, 737, 144452.	2.2	6
14	EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/I²-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers, 2020, 12, 951.	3.7	36
15	Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells, 2020, 9, 901.	4.1	92
16	Antiproliferation for Breast Cancer Cells by Ethyl Acetate Extract of Nepenthes thorellii x (ventricosa x maxima). International Journal of Molecular Sciences, 2019, 20, 3238.	4.1	19
17	Manoalide Preferentially Provides Antiproliferation of Oral Cancer Cells by Oxidative Stress-Mediated Apoptosis and DNA Damage. Cancers, 2019, 11, 1303.	3.7	40
18	MicroRNA regulation of TRAIL mediated signaling in different cancers: Control of micro steering wheels during the journey from bench-top to the bedside. Seminars in Cancer Biology, 2019, 58, 56-64.	9.6	13

#	Article	IF	CITATIONS
19	Ethyl acetate extract of <i>Nepenthes adrianii</i> x <i>clipeata</i> induces antiproliferation, apoptosis, and DNA damage against oral cancer cells through oxidative stress. Environmental Toxicology, 2019, 34, 891-901.	4.0	19
20	Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers, 2019, 11, 478.	3.7	42
21	Natural Product Mediated Regulation of Death Receptors and Intracellular Machinery: Fresh from the Pipeline about TRAIL-Mediated Signaling and Natural TRAIL Sensitizers. International Journal of Molecular Sciences, 2019, 20, 2010.	4.1	13
22	Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Pancreatic Cancer by Inducing Autophagy Through AMPK/mTOR Pathway. Frontiers in Pharmacology, 2019, 10, 319.	3.5	16
23	Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Seminars in Cancer Biology, 2019, 58, 47-55.	9.6	30
24	Nanoparticle systems for cancer vaccine. Nanomedicine, 2019, 14, 627-648.	3.3	85
25	Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs. International Journal of Molecular Sciences, 2019, 20, 800.	4.1	34
26	Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Seminars in Cancer Biology, 2019, 58, 65-79.	9.6	94
27	Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 2019, 141, 466-480.	7.1	60
28	Integrative analysis of mRNA and microRNA expression profiles in laryngeal squamous cell carcinoma. Journal of Cellular Biochemistry, 2019, 120, 3415-3422.	2.6	7
29	Effect of trail C1595T variant and gene expression on the pathogenesis of non-small cell lung cancer. Libyan Journal of Medicine, 2019, 14, 1535746.	1.6	6
30	Apigenin as an effective anticancer natural product: Spotlight on TRAIL, WNT/βâ€catenin, JAKâ€STAT pathways, and microRNAs. Journal of Cellular Biochemistry, 2019, 120, 1060-1067.	2.6	46
31	TRAIL Mediated Signaling in Breast Cancer: Awakening Guardian Angel to Induce Apoptosis and Overcome Drug Resistance. Advances in Experimental Medicine and Biology, 2019, 1152, 243-252.	1.6	2
32	Targeting of JAK-STAT Signaling in Breast Cancer: Therapeutic Strategies to Overcome Drug Resistance. Advances in Experimental Medicine and Biology, 2019, 1152, 271-281.	1.6	24
33	Role of mTORC1 and mTORC2 in Breast Cancer: Therapeutic Targeting of mTOR and Its Partners to Overcome Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, 2019, 1152, 283-292.	1.6	17
34	NEDD4 Family of E3 Ubiquitin Ligases in Breast Cancer: Spotlight on SMURFs, WWPs and NEDD4. Advances in Experimental Medicine and Biology, 2019, 1152, 365-375.	1.6	10
35	Role of Autophagy in Breast Cancer Development and Progression: Opposite Sides of theÂSame Coin. Advances in Experimental Medicine and Biology, 2019, 1152, 65-73.	1.6	22
36	Interplay of long non-coding RNAs and TGF/SMAD signaling in different cancers. Cellular and Molecular Biology, 2019, 64, 1-6.	0.9	12

#	Article	IF	CITATIONS
37	Regulation of Kisspeptin mediated signaling by non-coding RNAs in different cancers: the beginning of a new era. Cellular and Molecular Biology, 2019, 65, 72-75.	0.9	2
38	MicroRNA-143 as a new weapon against cancer: overview of the mechanistic insights and long non-coding RNA mediated regulation of miRNA-143 in different cancers. Cellular and Molecular Biology, 2019, 65, 1-5.	0.9	12
39	Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food and Chemical Toxicology, 2018, 119, 206-214.	3.6	31
40	MicroRNA-15a expression measured in urine samples as a potential biomarker of renal cell carcinoma. International Urology and Nephrology, 2018, 50, 851-859.	1.4	41
41	Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacological Research, 2018, 128, 366-375.	7.1	167
42	Natural Agents-Mediated Targeting of Histone Deacetylases. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 31-44.	2.3	5
43	Differential diagnosis of the small renal masses: role of the apparent diffusion coefficient of the diffusion-weighted MRI. International Urology and Nephrology, 2018, 50, 197-204.	1.4	18
44	Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnology Advances, 2018, 36, 328-334.	11.7	239
45	Signaling cascades in thyroid cancer: Increasing the armory of archers to hit bullseye. Journal of Cellular Biochemistry, 2018, 119, 3798-3808.	2.6	4
46	Polymer-Based Drug Delivery Systems for Cancer. Critical Reviews in Therapeutic Drug Carrier Systems, 2018, 35, 521-553.	2.2	27
47	PBN11-8, a Cytotoxic Polypeptide Purified from Marine Bacillus, Suppresses Invasion and Migration of Human Hepatocellular Carcinoma Cells by Targeting Focal Adhesion Kinase Pathways. Polymers, 2018, 10, 1043.	4.5	11
48	Granulin A Synergizes with Cisplatin to Inhibit the Growth of Human Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2018, 19, 3060.	4.1	18
49	Quercetinâ€mediated regulation of signal transduction cascades and microRNAs: Natural weapon against cancer. Journal of Cellular Biochemistry, 2018, 119, 9664-9674.	2.6	23
50	Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways. Food and Chemical Toxicology, 2018, 119, 98-105.	3.6	22
51	Emerging themes of regulation of oncogenic proteins by Solanum nigrum and its bioactive molecules in different cancers. Journal of Cellular Biochemistry, 2018, 119, 9640-9644.	2.6	14
52	Role of microRNAâ€410 in molecular oncology: A double edged sword. Journal of Cellular Biochemistry, 2018, 119, 8737-8742.	2.6	25
53	Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers. International Journal of Molecular Sciences, 2018, 19, 652.	4.1	45
54	MicroRNA Regulation of Telomerase Reverse Transcriptase (TERT): Micro Machines Pull Strings of Papier-Mâché Puppets. International Journal of Molecular Sciences, 2018, 19, 1051.	4.1	20

#	Article	IF	CITATIONS
55	Potential Anticancer Properties of Osthol: A Comprehensive Mechanistic Review. Nutrients, 2018, 10, 36.	4.1	70
56	MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2313-2318.	2.5	33
57	Current Knowledge of miRNAs as Biomarkers in Breast Cancer. , 2018, , 221-231.		2
58	Maslinic acid as an effective anticancer agent. Cellular and Molecular Biology, 2018, 64, 87-91.	0.9	14
59	PiperlongumineÂas anticancer agent: The story so far about killing many birds with one stone. Cellular and Molecular Biology, 2018, 64, 102.	0.9	9
60	C-Kit receptor and tryptase expressing mast cells correlate with angiogenesis in breast cancer patients. Oncotarget, 2018, 9, 7918-7927.	1.8	16
61	Role of CEACAM in Different Cancers. , 2018, , 293-300.		0
62	From Endometriosis to Cancer: Spotlight on Intracellular Signaling Cascades and MicroRNAs. , 2018, , 1-10.		0
63	Tranquilizing and Awakening ATM to Promote Killing of Cancer Cells. , 2018, , 47-58.		0
64	Natural Agents Mediated Regulation of microRNAs: Do We Need Skilled Archers to Hit the Bullseye. , 2018, , 187-197.		0
65	Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumor Biology, 2017, 39, 101042831769552.	1.8	43
66	Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor. Seminars in Cancer Biology, 2017, 46, 132-137.	9.6	53
67	The effect of CTLA-4 and CD28 gene variants and circulating protein levels in patients with gastric cancer. Biyokimya Dergisi, 2017, 42, 551-558.	0.5	4
68	PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track?. Geburtshilfe Und Frauenheilkunde, 2017, 77, 1095-1103.	1.8	99
69	Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. International Urology and Nephrology, 2017, 49, 215-224.	1.4	39
70	MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. International Journal of Molecular Sciences, 2017, 18, 2089.	4.1	53
71	Oleuropein and Cancer Chemoprevention: The Link is Hot. Molecules, 2017, 22, 705.	3.8	57
72	Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. International Journal of Molecular Sciences, 2017, 18, 643.	4.1	97

Ammad Ahmad Farooqi

#	Article	IF	CITATIONS
73	TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. International Journal of Molecular Sciences, 2017, 18, 1523.	4.1	43
74	Journey of TRAIL from bench to bedside and its potential role in immuno-oncology. Oncology Reviews, 2017, 11, 332.	1.8	37
75	Regulation of signal transduction cascades by Pterostilbenes in different cancers: Is it a death knell for oncogenic pathways. Cellular and Molecular Biology, 2017, 63, 5.	0.9	5
76	Expression of miR-373 and its predicted target genes E-cadherin and CD44 in patients with laryngeal squamous cell carcinoma. Cellular and Molecular Biology, 2017, 63, 29.	0.9	1
77	Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy. Current Pharmaceutical Design, 2017, 23, 454-466.	1.9	33
78	Role of nanotechnology and gene delivery systems in TRAIL based therapies. Ecancermedicalscience, 2016, 10, 660.	1.1	16
79	Magnetic nanomaterials and sensors for biological detection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2459-2473.	3.3	50
80	ls miRâ€34a a Wellâ€equipped Swordsman to Conquer Temple of Molecular Oncology?. Chemical Biology and Drug Design, 2016, 87, 321-334.	3.2	31
81	DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Letters, 2016, 373, 185-192.	7.2	82
82	New Frontiers in Promoting TRAIL-Mediated Cell Death: Focus on Natural Sensitizers, miRNAs, and Nanotechnological Advancements. Cell Biochemistry and Biophysics, 2016, 74, 3-10.	1.8	12
83	Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 217-223.	2.3	8
84	Circulating tumor cells as trigger to hematogenous spreads and potential biomarkers to predict the prognosis in ovarian cancer. Tumor Biology, 2016, 37, 71-75.	1.8	25
85	Restoring TRAIL Induced Apoptosis Using Naturopathy. Hercules Joins Hand with Nature to Triumph Over Lernaean Hydra. Current Genomics, 2016, 18, 27-338.	1.6	4
86	Kisspeptin Mediated Signaling in Cancer. Current Topics in Medicinal Chemistry, 2016, 16, 2471-2476.	2.1	6
87	Oleuropein Mediated Targeting of Signaling Network in Cancer. Current Topics in Medicinal Chemistry, 2016, 16, 2477-2483.	2.1	23
88	Plateletâ€derived growth factor (<scp>PDGF</scp>) signalling in cancer: rapidly emerging signalling landscape. Cell Biochemistry and Function, 2015, 33, 257-265.	2.9	98
89	Epigenetic mechanisms in cancer: push and pull between kneaded erasers and fate writers. International Journal of Nanomedicine, 2015, 10, 3183.	6.7	9
90	Recent progress in fungus-derived bioactive agents for targeting of signaling machinery in cancer cells. Drug Design, Development and Therapy, 2015, 9, 1797.	4.3	7

#	Article	IF	CITATIONS
91	HIV-associated osteoporosis. Reviews in Medical Microbiology, 2015, 26, 14-19.	0.9	2
92	Activation and Inhibition of ATM by Phytochemicals: Awakening and Sleeping the Guardian Angel Naturally. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 357-366.	2.3	5
93	Overview on the complexity of androgen receptor-targeted therapy for prostate cancer. Cancer Cell International, 2015, 15, 7.	4.1	12
94	Genetic Variants in the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Death Receptor Genes Contribute to Susceptibility to Bladder Cancer. Genetic Testing and Molecular Biomarkers, 2015, 19, 309-315.	0.7	7
95	Advances in anti-angiogenic agents for ovarian cancer treatment: The role of trebananib (AMG 386). Critical Reviews in Oncology/Hematology, 2015, 94, 302-310.	4.4	16
96	The biological complexity of RKIP signaling in human cancers. Experimental and Molecular Medicine, 2015, 47, e185-e185.	7.7	34
97	Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumor Biology, 2015, 36, 5743-5752.	1.8	96
98	Clinical Advances in Anticancer Essential Oils. , 2015, , 125-133.		1
99	Natural Products Mediated Regulation of Oxidative Stress and DNA Damage in Ultraviolet Exposed Skin Cells. Current Pharmaceutical Biotechnology, 2015, 16, 1078-1084.	1.6	11
100	Association between Laryngeal Squamous Cell Carcinoma and Polymorphisms in Tumor Necrosis Factor Related Apoptosis Induce Ligand (TRAIL), TRAIL Receptor and sTRAIL Levels. Asian Pacific Journal of Cancer Prevention, 2015, 15, 10697-10703.	1.2	7
101	TRAIL and Bortezomib: Killing Cancer with Two Stones. Asian Pacific Journal of Cancer Prevention, 2015, 16, 1671-1674.	1.2	2
102	Citrus Fruits and their Bioactive Ingredients: Leading Four Horsemen from Front. Asian Pacific Journal of Cancer Prevention, 2015, 16, 2575-2580.	1.2	4
103	Tumor Infiltrating Lymphocytes in Ovarian Cancer. Asian Pacific Journal of Cancer Prevention, 2015, 16, 3635-3638.	1.2	37
104	Hepatoprotective effect of leaves of aqueous ethanol extract of <i>Cestrum nocturnum</i> against paracetamol-induced hepatotoxicity. Bangladesh Journal of Pharmacology, 2014, 9, .	0.4	13
105	Reactive Oxygen Species and Autophagy Modulation in Non-Marine Drugs and Marine Drugs. Marine Drugs, Drugs, 2014, 12, 5408-5424.	4.6	32
106	Antisense therapeutics in oncology: current status. OncoTargets and Therapy, 2014, 7, 2035.	2.0	51
107	Physiology to the Pleiotropic Role of RNAs: Prospecting Novel Therapies. BioMed Research International, 2014, 2014, 1-1.	1.9	0
108	Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell International, 2014, 14, 124.	4.1	75

Ammad Ahmad Farooqi

#	Article	IF	CITATIONS
109	Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle. Asian Pacific Journal of Cancer Prevention, 2014, 15, 4739-4743.	1.2	16
110	Restoring TRAIL Mediated Signaling in Ovarian Cancer Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 459-474.	2.3	9
111	Hepatocellular carcinoma: targeting of oncogenic signaling networks in TRAIL resistant cancer cells. Molecular Biology Reports, 2014, 41, 6909-6917.	2.3	8
112	Mir-34: A New Weapon Against Cancer?. Molecular Therapy - Nucleic Acids, 2014, 3, e195.	5.1	421
113	Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell International, 2014, 14, 34.	4.1	15
114	Methanolic Extracts of Solieria robusta Inhibits Proliferation of Oral Cancer Ca9-22 Cells via Apoptosis and Oxidative Stress. Molecules, 2014, 19, 18721-18732.	3.8	39
115	TRAIL Mediated Signaling in Pancreatic Cancer. Asian Pacific Journal of Cancer Prevention, 2014, 15, 5977-5982.	1.2	4
116	TRAIL Based Therapy: Overview of Mesenchymal Stem Cell Based Delivery and miRNA Controlled Expression of TRAIL. Asian Pacific Journal of Cancer Prevention, 2014, 15, 6495-6497.	1.2	9
117	Dealing Naturally with Stumbling Blocks on Highways and Byways of TRAIL Induced Signaling. Asian Pacific Journal of Cancer Prevention, 2014, 15, 8041-8046.	1.2	4
118	Anticancer Activity of Essential Oils: Targeting of Protein Networks in Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 8047-8050.	1.2	9
119	Drugs from Marine Sources: Modulation of TRAIL Induced Apoptosis in Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 9045-9047.	1.2	1
120	Ionizing Radiations Induce Apoptosis in TRAIL Resistant Cancer Cells: in vivo and in vitro Analysis. Asian Pacific Journal of Cancer Prevention, 2014, 15, 1905-1907.	1.2	13
121	miR-421, miR-155 and miR-650: Emerging Trends of Regulation of Cancer and Apoptosis. Asian Pacific Journal of Cancer Prevention, 2014, 15, 1909-1912.	1.2	32
122	Anthocyanins: Targeting of Signaling Networks in Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 2379-2381.	1.2	48
123	Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3359-3362.	1.2	8
124	Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3865-3871.	1.2	50
125	miRNA Regulation of VEGF/VEGFR Signaling. , 2014, , 309-325.		0
126	miRNA Regulation of DNA Damage Repair Proteins in Cancer Cells: Interplay of ATM, TRAIL and miRNA. , 2014, , 289-307.		1

#	Article	IF	CITATIONS
127	Recently Emerging Signaling Landscape of Ataxia-Telangiectasia Mutated (ATM) Kinase. Asian Pacific Journal of Cancer Prevention, 2014, 15, 6485-6488.	1.2	6
128	Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell International, 2013, 13, 61.	4.1	13
129	miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics, 2013, 65, 315-332.	2.4	11
130	TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology. Applied Microbiology and Biotechnology, 2013, 97, 8849-8857.	3.6	11
131	While at Rome miRNA and TRAIL Do Whatever BCR-ABL Commands to Do. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 59-74.	2.3	3
132	TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell International, 2012, 12, 22.	4.1	9
133	Breast Cancer Proteome Takes More Than Two to Tango on TRAIL: Beat Them at Their Own Game. Journal of Membrane Biology, 2012, 245, 763-777.	2.1	6
134	Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: choreographers of â€~the dance macabre'. Cancer Cell International, 2012, 12, 50.	4.1	46
135	Prostate cancer is known by the companionship with ATM and miRNA it keeps: craftsmen of translation have dual behaviour with tailors of life thread. Cell Biochemistry and Function, 2012, 30, 611-617.	2.9	3
136	Prostate Cancer and Immunoproteome: Awakening and Reprogramming the Guardian Angels. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 191-198.	2.3	5
137	Upon the tightrope in prostate cancer: two acrobats on the same tightrope to cross the finishline. Molecular and Cellular Biochemistry, 2012, 364, 53-57.	3.1	2
138	NutriTRAILomics in prostate cancer: time to have two strings to one's bow. Molecular Biology Reports, 2012, 39, 4909-4914.	2.3	12
139	One Size Fits All in Prostate Cancer: A Story Tale Whose Time has Come and Gone. International Journal of Biological Markers, 2011, 26, 75-81.	1.8	3
140	TRAIL and guardian angel of genome integrity: ATM boards TRAIL blazer. Journal of Cancer Research and Clinical Oncology, 2011, 137, 1283-1287.	2.5	5
141	ATM protein kinase: the linchpin of cellular defenses to stress. Cellular and Molecular Life Sciences, 2011, 68, 2977-3006.	5.4	100
142	SMURF and NEDD4: Sharp Shooters Monitor the Gate Keepers and Ion Traffic Controllers of Lead Astray Cell. Journal of Membrane Biology, 2011, 244, 1-8.	2.1	4
143	TRPM channels: same ballpark, different players, and different rules in immunogenetics. Immunogenetics, 2011, 63, 773-787.	2.4	20
144	PDGF: the nuts and bolts of signalling toolbox. Tumor Biology, 2011, 32, 1057-1070.	1.8	30