List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8238704/publications.pdf Version: 2024-02-01

DONG-MING YAN

#	Article	IF	CITATIONS
1	Geometry Guided Deep Surface Normal Estimation. CAD Computer Aided Design, 2022, 142, 103119.	2.7	14
2	Parallel Computation of 3D Clipped Voronoi Diagrams. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 1363-1372.	4.4	10
3	Progressive polarization based reflection removal via realistic training data generation. Pattern Recognition, 2022, 124, 108497.	8.1	7
4	Image Inpainting With Local and Global Refinement. IEEE Transactions on Image Processing, 2022, 31, 2405-2420.	9.8	54
5	Scattered Points Interpolation with Globally Smooth B-Spline Surface using Iterative Knot Insertion. CAD Computer Aided Design, 2022, 148, 103244.	2.7	3
6	Scene text removal via cascaded text stroke detection and erasing. Computational Visual Media, 2022, 8, 273-287.	17.5	15
7	Neural texture transfer assisted video coding with adaptive up-sampling. Signal Processing: Image Communication, 2022, 107, 116754.	3.2	0
8	LIST: low illumination scene text detector with automatic feature enhancement. Visual Computer, 2022, 38, 3231-3242.	3.5	5
9	An occlusion-resistant circle detector using inscribed triangles. Pattern Recognition, 2021, 109, 107588.	8.1	18
10	Extracting Cycle-aware Feature Curve Networks from 3D Models. CAD Computer Aided Design, 2021, 131, 102949.	2.7	5
11	Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud. IEEE Transactions on Image Processing, 2021, 30, 5072-5084.	9.8	33
12	Customized Summarizations of Visual Data Collections. Computer Graphics Forum, 2021, 40, 347-370.	3.0	0
13	Combining convex hull and directed graph for fast and accurate ellipse detection. Graphical Models, 2021, 116, 101110.	2.4	11
14	Robust Ellipse Fitting Using Hierarchical Gaussian Mixture Models. IEEE Transactions on Image Processing, 2021, 30, 3828-3843.	9.8	11
15	Realistic Procedural Plant Modeling from Multiple View Images. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 1372-1384.	4.4	30
16	Learn with diversity and from harder samples: Improving the generalization of CNN-Based detection of computer-generated images. Forensic Science International: Digital Investigation, 2020, 35, 301023.	1.7	12
17	Real-time facial pose estimation and tracking by coarse-to-fine iterative optimization. Tsinghua Science and Technology, 2020, 25, 690-700.	6.1	6
18	Pixelâ€wise Dense Detector for Image Inpainting. Computer Graphics Forum, 2020, 39, 471-482.	3.0	13

#	Article	IF	CITATIONS
19	Distinguishing Computer-Generated Images from Natural Images Using Channel and Pixel Correlation. Journal of Computer Science and Technology, 2020, 35, 592-602.	1.5	25
20	Learning local shape descriptors for computing non-rigid dense correspondence. Computational Visual Media, 2020, 6, 95-112.	17.5	12
21	Cut-enhanced PolyCube-maps for feature-aware all-hex meshing. ACM Transactions on Graphics, 2020, 39, .	7.2	22
22	Robustly computing restricted Voronoi diagrams (RVD) on thin-plate models. Computer Aided Geometric Design, 2020, 79, 101848.	1.2	12
23	Reflection Removal via Realistic Training Data Generation. , 2020, , .		1
24	Using Convex Hull for Fast and Accurate Ellipse Detection. , 2020, , .		0
25	Blending Surface Segmentation and Editing for 3D Models. IEEE Transactions on Visualization and Computer Graphics, 2020, PP, 1-1.	4.4	5
26	MGCN. ACM Transactions on Graphics, 2020, 39, .	7.2	14
27	Isotropic Surface Remeshing without Large and Small Angles. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 2430-2442.	4.4	23
28	A Semi-Explicit Surface Tracking Mechanism for Multi-Phase Immiscible Liquids. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 2873-2885.	4.4	2
29	Impact of Data Preparation and CNN's First Layer on Performance of Image Forensics: A Case Study of Detecting Colorized Images. , 2019, , .		3
30	Near support-free multi-directional 3D printing via global-optimal decomposition. Graphical Models, 2019, 104, 101034.	2.4	27
31	Fast and Error-Bounded Space-Variant Bilateral Filtering. Journal of Computer Science and Technology, 2019, 34, 550-568.	1.5	6
32	Selection Expressions for Procedural Modeling. IEEE Transactions on Visualization and Computer Graphics, 2019, 26, 1-1.	4.4	1
33	Consistently fitting orthopedic casts. Computer Aided Geometric Design, 2019, 71, 130-141.	1.2	6
34	A Robust Local Spectral Descriptor for Matching Non-Rigid Shapes With Incompatible Shape Structures. , 2019, , .		12
35	Computing 3D Clipped Voronoi Diagrams on GPU. , 2019, , .		2
36	Anisotropic Surface Remeshing without Obtuse Angles. Computer Graphics Forum, 2019, 38, 755-763.	3.0	2

#	Article	IF	CITATIONS
37	Automatic and high-quality surface mesh generation for CAD models. CAD Computer Aided Design, 2019, 109, 49-59.	2.7	27
38	Fieldâ€Aligned Isotropic Surface Remeshing. Computer Graphics Forum, 2018, 37, 343-357.	3.0	15
39	Robust Tracking Through the Design of High Quality Fiducial Markers: An Optimization Tool for ARToolKit. IEEE Access, 2018, 6, 22421-22433.	4.2	21
40	Surface remeshing with robust user-guided segmentation. Computational Visual Media, 2018, 4, 113-122.	17.5	12
41	Generating hybrid interior structure for 3D printing. Computer Aided Geometric Design, 2018, 62, 63-72.	1.2	11
42	Fold and fit: Space conserving shape editing. Computers and Graphics, 2018, 70, 316-326.	2.5	3
43	High-quality 2D mesh generation without obtuse and small angles. Computers and Mathematics With Applications, 2018, 75, 582-595.	2.7	7
44	Instant Stippling on 3D Scenes. Computer Graphics Forum, 2018, 37, 255-266.	3.0	5
45	Frontiers in biomolecular mesh generation and molecular visualization systems. Visual Computing for Industry, Biomedicine, and Art, 2018, 1, 7.	3.7	5
46	Learning 3D Keypoint Descriptors for Non-rigid Shape Matching. Lecture Notes in Computer Science, 2018, , 3-20.	1.3	20
47	Molecular Surface Remeshing with Local Region Refinement. International Journal of Molecular Sciences, 2018, 19, 1383.	4.1	8
48	Distinguishing Between Natural and Computer-Generated Images Using Convolutional Neural Networks. IEEE Transactions on Information Forensics and Security, 2018, 13, 2772-2787.	6.9	81
49	Improving regularity of the centoridal voronoi tessellation. , 2018, , .		2
50	Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 2560-2573.	4.4	43
51	A Simple Push-Pull Algorithm for Blue-Noise Sampling. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 2496-2508.	4.4	32
52	Obtuse triangle elimination for isotropic remeshing. , 2017, , .		1
53	Maximal Poisson-disk sampling by sampling radius optimization. Scientia Sinica Informationis, 2017, 47, 442-454.	0.4	0
54	Low-discrepancy blue noise sampling. ACM Transactions on Graphics, 2016, 35, 1-13.	7.2	32

#	Article	IF	CITATIONS
55	Maximal poisson-disk sampling via sampling radius optimization. , 2016, , .		3
56	Obtuse triangle removal for 2D mesh generation. , 2016, , .		0
57	Symmetrization of facade layouts. Graphical Models, 2016, 85, 11-21.	2.4	4
58	Disk Density Tuning of a Maximal Random Packing. Computer Graphics Forum, 2016, 35, 259-269.	3.0	8
59	Analyzing surface sampling patterns using the localized pair correlation function. Computational Visual Media, 2016, 2, 219-230.	17.5	1
60	Feature-aware natural texture synthesis. Visual Computer, 2016, 32, 43-55.	3.5	6
61	Automatic Constraint Detection for 2D Layout Regularization. IEEE Transactions on Visualization and Computer Graphics, 2016, 22, 1933-1944.	4.4	8
62	Tetrahedral meshing via maximal Poisson-disk sampling. Computer Aided Geometric Design, 2016, 43, 186-199.	1.2	9
63	Non-Obtuse Remeshing with Centroidal Voronoi Tessellation. IEEE Transactions on Visualization and Computer Graphics, 2016, 22, 2136-2144.	4.4	35
64	Capacity constrained blue-noise sampling on surfaces. Computers and Graphics, 2016, 55, 44-54.	2.5	12
65	Computational network design from functional specifications. ACM Transactions on Graphics, 2016, 35, 1-12.	7.2	27
66	CAD Parts-Based Assembly Modeling by Probabilistic Reasoning. , 2015, , .		2
67	Facade Layout Symmetrization. , 2015, , .		0
68	A Survey of Blue-Noise Sampling and Its Applications. Journal of Computer Science and Technology, 2015, 30, 439-452.	1.5	48
69	Patch layout generation by detecting feature networks. Computers and Graphics, 2015, 46, 275-282.	2.5	9
70	Efficient maximal Poisson-disk sampling and remeshing on surfaces. Computers and Graphics, 2015, 46, 72-79.	2.5	34
71	Wall grid structure for interior scene synthesis. Computers and Graphics, 2015, 46, 231-243.	2.5	8
72	Inverse procedural modeling of facade layouts. ACM Transactions on Graphics, 2014, 33, 1-10.	7.2	57

#	Article	IF	CITATIONS
73	Unbiased Sampling and Meshing of Isosurfaces. IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 1579-1589.	4.4	4
74	Low-Resolution Remeshing Using the Localized Restricted Voronoi Diagram. IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 1418-1427.	4.4	43
75	Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization. Engineering With Computers, 2014, 30, 289-300.	6.1	7
76	Efficient triangulation of Poisson-disk sampled point sets. Visual Computer, 2014, 30, 773-785.	3.5	8
77	Blueâ€Noise Remeshing with Farthest Point Optimization. Computer Graphics Forum, 2014, 33, 167-176.	3.0	21
78	Generating and exploring good building layouts. ACM Transactions on Graphics, 2013, 32, 1-10.	7.2	72
79	Efficient computation of clipped Voronoi diagram for mesh generation. CAD Computer Aided Design, 2013, 45, 843-852.	2.7	64
80	Illustrating the disassembly of 3D models. Computers and Graphics, 2013, 37, 574-581.	2.5	16
81	Illustrating how mechanical assemblies work. Communications of the ACM, 2013, 56, 106-114.	4.5	15
82	Gap processing for adaptive maximal poisson-disk sampling. ACM Transactions on Graphics, 2013, 32, 1-15.	7.2	55
83	Adaptive maximal Poisson-disk sampling on surfaces. , 2012, , .		7
84	Acquiring 3D indoor environments with variability and repetition. ACM Transactions on Graphics, 2012, 31, 1-11.	7.2	128
85	Variational mesh segmentation via quadric surface fitting. CAD Computer Aided Design, 2012, 44, 1072-1082.	2.7	96
86	Computing 2D Periodic Centroidal Voronoi Tessellation. , 2011, , .		13
87	Obtuse triangle suppression in anisotropic meshes. Computer Aided Geometric Design, 2011, 28, 537-548.	1.2	15
88	Illustrating how mechanical assemblies work. ACM Transactions on Graphics, 2010, 29, 1-12.	7.2	70
89	Efficient Computation of 3D Clipped Voronoi Diagram. Lecture Notes in Computer Science, 2010, , 269-282.	1.3	27
90	On centroidal voronoi tessellation—energy smoothness and fast computation. ACM Transactions on Graphics, 2009, 28, 1-17.	7.2	230

#	Article	IF	CITATIONS
91	Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram. Computer Graphics Forum, 2009, 28, 1445-1454.	3.0	142
92	Efficient and robust reconstruction of botanical branching structure from laser scanned points. , 2009, , .		27
93	Fitting Sharp Features with Loop Subdivision Surfaces. Computer Graphics Forum, 2008, 27, 1383-1391.	3.0	12
94	Silhouette Smoothing for Real-Time Rendering of Mesh Surfaces. IEEE Transactions on Visualization and Computer Graphics, 2008, 14, 640-652.	4.4	5
95	A quasi-Monte Carlo method for computing areas of point-sampled surfaces. CAD Computer Aided Design, 2006, 38, 55-68.	2.7	21
96	Quadric Surface Extraction by Variational Shape Approximation. Lecture Notes in Computer Science, 2006, , 73-86.	1.3	50