Kristian Strã, mgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8237393/publications.pdf

Version: 2024-02-01

141 papers

4,739 citations

36 h-index 60 g-index

152 all docs 152 docs citations

152 times ranked

5155 citing authors

#	Article	IF	Citations
1	Bidirectional protein–protein interactions control liquid–liquid phase separation of PSD-95 and its interaction partners. IScience, 2022, 25, 103808.	4.1	6
2	Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
3	Development of Peptide-Based PDZ Domain Inhibitors. Methods in Molecular Biology, 2021, 2256, 157-177.	0.9	2
4	Chemical Synthesis of PDZ Domains. Methods in Molecular Biology, 2021, 2256, 193-216.	0.9	1
5	Targeting the APP-Mint2 Protein–Protein Interaction with a Peptide-Based Inhibitor Reduces Amyloid-β Formation. Journal of the American Chemical Society, 2021, 143, 891-901.	13.7	15
6	A High-Affinity Peptide Ligand Targeting Syntenin Inhibits Glioblastoma. Journal of Medicinal Chemistry, 2021, 64, 1423-1434.	6.4	10
7	Molecular Details of a Coupled Binding and Folding Reaction between the Amyloid Precursor Protein and a Folded Domain. ACS Chemical Biology, 2021, 16, 1191-1200.	3.4	3
8	Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. Journal of Biological Chemistry, 2021, 297, 100953.	3.4	9
9	Human Fibrinogen Inhibits Amyloid Assembly of Most Phenol-Soluble Modulins from <i>Staphylococcus aureus</i> . ACS Omega, 2021, 6, 21960-21970.	3. 5	6
10	Multisite NHERF1 phosphorylation controls GRK6A regulation of hormone-sensitive phosphate transport. Journal of Biological Chemistry, 2021, 296, 100473.	3.4	6
11	Site-specific phosphorylation of PSD-95 dynamically regulates the postsynaptic density as observed by phase separation. IScience, 2021, 24, 103268.	4.1	8
12	Recent achievements in developing selective G _q inhibitors. Medicinal Research Reviews, 2020, 40, 135-157.	10.5	26
13	Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. Journal of Medicinal Chemistry, 2020, 63, 5013-5030.	6.4	23
14	Targeting receptor complexes: a new dimension in drug discovery. Nature Reviews Drug Discovery, 2020, 19, 884-901.	46.4	42
15	Conjugation of Therapeutic PSD-95 Inhibitors to the Cell-Penetrating Peptide Tat Affects Blood–Brain Barrier Adherence, Uptake, and Permeation. Pharmaceutics, 2020, 12, 661.	4.5	22
16	A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition. Journal of Neuroscience, 2020, 40, 4954-4969.	3.6	11
17	A highâ€affinity, bivalent <scp>PDZ</scp> domain inhibitor complexes <scp>PICK</scp> 1 to alleviate neuropathic pain. EMBO Molecular Medicine, 2020, 12, e11248.	6.9	20
18	Mechanism and site of action of big dynorphin on ASIC1a. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7447-7454.	7.1	30

#	Article	IF	CITATIONS
19	The Effects of Lipidation on a TAT-Containing Peptide-Based Inhibitor of PSD-95. Australian Journal of Chemistry, 2020, 73, 307.	0.9	0
20	Site-Specific Phosphorylation of PDZ Domains. Methods in Molecular Biology, 2020, 2133, 235-261.	0.9	0
21	Designing Poly-agonists for Treatment of Metabolic Diseases: Challenges and Opportunities. Drugs, 2019, 79, 1187-1197.	10.9	15
22	Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers. Biomolecules, 2019, 9, 659.	4.0	30
23	Targeting the γ-Aminobutyric Acid Type B (GABA _B) Receptor Complex: Development of Inhibitors Targeting the K ⁺ Channel Tetramerization Domain (KCTD) Containing Proteins/GABA _B Receptor Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019. 62. 8819-8830.	6.4	15
24	PDZ Domains as Drug Targets. Advanced Therapeutics, 2019, 2, 1800143.	3.2	66
25	Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor. Neuropharmacology, 2019, 150, 100-111.	4.1	21
26	Structure–Activity Relationship Studies of the Natural Product G _{q/11} Protein Inhibitor YMâ€254890. ChemMedChem, 2019, 14, 865-870.	3.2	21
27	Rational design of a heterotrimeric G protein $\hat{l}\pm$ subunit with artificial inhibitor sensitivity. Journal of Biological Chemistry, 2019, 294, 5747-5758.	3.4	32
28	Probing the Mint2 Protein–Protein Interaction Network Relevant to the Pathophysiology of Alzheimer's Disease. ChemBioChem, 2018, 19, 1119-1122.	2.6	8
29	Protein Engineering Reveals Mechanisms of Functional Amyloid Formation in Pseudomonas aeruginosa Biofilms. Journal of Molecular Biology, 2018, 430, 3751-3763.	4.2	44
30	Probing Backbone Hydrogen Bonds in Proteins by Amideâ€toâ€Ester Mutations. ChemBioChem, 2018, 19, 2136-2145.	2.6	11
31	Structure–activity relationship and conformational studies of the natural product cyclic depsipeptides YM-254890 and FR900359. European Journal of Medicinal Chemistry, 2018, 156, 847-860.	5.5	24
32	Controlling Ca ²⁺ Permeable α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Photochromic Ion Channel Blockers. Journal of Medicinal Chemistry, 2018, 61, 8048-8053.	6.4	11
33	PSD-95 uncoupling from NMDA receptors by Tat- <i>N</i> -dimer ameliorates neuronal depolarization in cortical spreading depression. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1820-1828.	4.3	27
34	Targeting PSD-95 as a Novel Approach in the Treatment of Stroke. Springer Series in Translational Stroke Research, 2017, , 157-184.	0.1	1
35	Structure–Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YMâ€254890, Targeting the G _q Protein. ChemMedChem, 2017, 12, 830-834.	3.2	23
36	Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats. Pharmacology Biochemistry and Behavior, 2017, 161, 62-67.	2.9	2

#	Article	IF	Citations
37	Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers. ACS Chemical Biology, 2017, 12, 2558-2562.	3.4	13
38	Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats. Neurochemical Research, 2017, 42, 3401-3413.	3. 3	5
39	Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein–Protein Interactions. ACS Chemical Biology, 2017, 12, 2313-2323.	3.4	40
40	<i>In vitro</i> and <i>inÂvivo</i> effects of a novel dimeric inhibitor of <scp>PSD</scp> â€95 on excitotoxicity and functional recovery after experimental traumatic brain injury. European Journal of Neuroscience, 2017, 45, 238-248.	2.6	14
41	Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission. Nature Chemical Biology, 2017, 13, 153-160.	8.0	33
42	Knockin mouse with mutant $\hat{Gl}\pm 11$ mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors. JCI Insight, 2017, 2, e91079.	5.0	26
43	Structure–activity relationship studies of citalopram derivatives: examining substituents conferring selectivity for the allosteric site in the 5â€HT transporter. British Journal of Pharmacology, 2016, 173, 925-936.	5.4	24
44	Ligand binding to the PDZ domains of postsynaptic density protein 95. Protein Engineering, Design and Selection, 2016, 29, 169-175.	2.1	13
45	Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling. Neuron, 2016, 92, 126-142.	8.1	15
46	Synthesis of Symmetrical and Nonâ€Symmetrical Bivalent Neurotransmitter Ligands. ChemistrySelect, 2016, 1, 407-413.	1.5	1
47	Importance of a Conserved Lys/Arg Residue for Ligand/PDZ Domain Interactions as Examined by Protein Semisynthesis. ChemBioChem, 2016, 17, 1936-1944.	2.6	4
48	Total synthesis and structure–activity relationship studies of a series of selective G protein inhibitors. Nature Chemistry, 2016, 8, 1035-1041.	13.6	67
49	Interrogating the Molecular Basis for Substrate Recognition in Serotonin and Dopamine Transporters with High-Affinity Substrate-Based Bivalent Ligands. ACS Chemical Neuroscience, 2016, 7, 1406-1417.	3. 5	20
50	Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter. Nature Communications, 2016, 7, 11261.	12.8	51
51	Effects of the dimeric PSD-95 inhibitor UCCB01-144 in mouse models of pain, cognition and motor function. European Journal of Pharmacology, 2016, 780, 166-173.	3.5	6
52	Design and synthesis of triazole-based peptidomimetics of a PSD-95 PDZ domain inhibitor. MedChemComm, 2016, 7, 531-536.	3.4	8
53	Design and Synthesis of Highâ€Affinity Dimeric Inhibitors Targeting the Interactions between Gephyrin and Inhibitory Neurotransmitter Receptors. Angewandte Chemie - International Edition, 2015, 54, 490-494.	13.8	21
54	Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter. Scientific Reports, 2015, 5, 15650.	3.3	31

#	Article	IF	CITATIONS
55	Rigidified Clicked Dimeric Ligands for Studying the Dynamics of the PDZ1â€2 Supramodule of PSDâ€95. ChemBioChem, 2015, 16, 64-69.	2.6	15
56	Design, Synthesis, and Characterization of Fatty Acid Derivatives of a Dimeric Peptide-Based Postsynaptic Density-95 (PSD-95) Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 1575-1580.	6.4	10
57	Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation. Journal of Biological Chemistry, 2015, 290, 14582-14594.	3.4	8
58	Polyamine Toxins from Spiders and Wasps. , 2015, , 201-214.		1
59	Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter. ACS Chemical Neuroscience, 2015, 6, 1892-1900.	3.5	27
60	Binding of ArgTX-636 in the NMDA Receptor Ion Channel. Journal of Molecular Biology, 2015, 427, 176-189.	4.2	13
61	Identification and Characterization of a Smallâ€Molecule Inhibitor of Deathâ€Associated Protein Kinase 1. ChemBioChem, 2015, 16, 59-63.	2.6	20
62	Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family. PLoS ONE, 2015, 10, e0117668.	2.5	17
63	The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain. PLoS ONE, 2014, 9, e95619.	2.5	11
64	Molecular basis of the alternative recruitment of GABAA versus glycine receptors through gephyrin. Nature Communications, 2014, 5, 5767.	12.8	53
65	Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines. Organic and Biomolecular Chemistry, 2014, 12, 5745.	2.8	11
66	Structure–Activity Relationship Study of Spider Polyamine Toxins as Inhibitors of Ionotropic Glutamate Receptors. ChemMedChem, 2014, 9, 2661-2670.	3.2	10
67	Inhibition of AMPA Receptors by Polyamine Toxins is Regulated by Agonist Efficacy and Stargazin. Neurochemical Research, 2014, 39, 1906-1913.	3.3	3
68	Molecular Basis for Selective Serotonin Reuptake Inhibition by the Antidepressant Agent Fluoxetine (Prozac). Molecular Pharmacology, 2014, 85, 703-714.	2.3	54
69	Characterization of Intracellular Regions in the Human Serotonin Transporter for Phosphorylation Sites. ACS Chemical Biology, 2014, 9, 935-944.	3.4	21
70	Structure–Activity Relationship Studies of N-Methylated and N-Hydroxylated Spider Polyamine Toxins as Inhibitors of Ionotropic Glutamate Receptors. Journal of Medicinal Chemistry, 2014, 57, 4940-4949.	6.4	11
71	Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations. Nature Communications, 2014, 5, 3215.	12.8	33
72	Evaluation of PhTX-74 as Subtype-Selective Inhibitor of GluA2-Containing AMPA Receptors. Molecular Pharmacology, 2014, 85, 261-268.	2.3	20

#	Article	IF	Citations
73	Facile synthesis of \hat{l} ±-hydroxy carboxylic acids from the corresponding \hat{l} ±-amino acids. Tetrahedron Letters, 2014, 55, 4149-4151.	1.4	15
74	Preparation of Peptide Thioesters through Fmocâ€Based Solidâ€Phase Peptide Synthesis by Using Amino Thioesters. European Journal of Organic Chemistry, 2013, 2013, 5290-5294.	2.4	9
75	Design and Synthesis of Peptide YY Analogues with C-terminal Backbone Amide-to-Ester Modifications. ACS Medicinal Chemistry Letters, 2013, 4, 1228-1232.	2.8	6
76	UCCB01-125, a dimeric inhibitor of PSD-95, reduces inflammatory pain without disrupting cognitive or motor performance: Comparison with the NMDA receptor antagonist MK-801. Neuropharmacology, 2013, 67, 193-200.	4.1	20
77	Synthetic and mechanistic insight into nosylation of glycine residues. Organic and Biomolecular Chemistry, 2013, 11, 2288.	2.8	3
78	Structure–Activity Relationship Studies of Argiotoxins: Selective and Potent Inhibitors of Ionotropic Glutamate Receptors. Journal of Medicinal Chemistry, 2013, 56, 1171-1181.	6.4	29
79	Energetic Pathway Sampling in a Protein Interaction Domain. Structure, 2013, 21, 1193-1202.	3.3	38
80	Probing the Role of Backbone Hydrogen Bonds in Protein–Peptide Interactions by Amide-to-Ester Mutations. Journal of the American Chemical Society, 2013, 135, 12998-13007.	13.7	45
81	Development of Potent Fluorescent Polyamine Toxins and Application in Labeling of Ionotropic Glutamate Receptors in Hippocampal Neurons. ACS Chemical Biology, 2013, 8, 2033-2041.	3.4	18
82	Recombinant Production of Peptide $\langle i \rangle C \langle i \rangle$ -Terminal α-Amides Using an Engineered Intein. Bioconjugate Chemistry, 2013, 24, 1883-1894.	3.6	16
83	A Parallel Semisynthetic Approach for Structure–Activity Relationship Studies of Peptide YY. ChemMedChem, 2013, 8, 1505-1513.	3.2	7
84	Interaction partners of PSD-93 studied by X-ray crystallography and fluorescence polarization spectroscopy. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 587-594.	2.5	5
85	PDZ Domain-Mediated Interactions of G Protein-Coupled Receptors with Postsynaptic Density Protein 95: Quantitative Characterization of Interactions. PLoS ONE, 2013, 8, e63352.	2.5	11
86	A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3317-3322.	7.1	162
87	Interaction of Antidepressants with the Serotonin and Norepinephrine Transporters. Journal of Biological Chemistry, 2012, 287, 43694-43707.	3.4	73
88	Side-Chain Interactions Form Late and Cooperatively in the Binding Reaction between Disordered Peptides and PDZ Domains. Journal of the American Chemical Society, 2012, 134, 599-605.	13.7	41
89	General Synthesis of \hat{l}^2 -Alanine-Containing Spider Polyamine Toxins and Discovery of Nephila Polyamine Toxins 1 and 8 as Highly Potent Inhibitors of Ionotropic Glutamate Receptors. Journal of Medicinal Chemistry, 2012, 55, 10297-10301.	6.4	8
90	An expanded view of the protein folding landscape of PDZ domains. Biochemical and Biophysical Research Communications, 2012, 421, 550-553.	2.1	12

#	Article	IF	Citations
91	A Heteromeric Snake Toxin and the Molecular Details of Pain Perception. Angewandte Chemie - International Edition, 2012, 51, 4009-4011.	13.8	0
92	Ligand binding by PDZ domains. BioFactors, 2012, 38, 338-348.	5.4	66
93	Cell-Permeable and Plasma-Stable Peptidomimetic Inhibitors of the Postsynaptic Density-95/ <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Interaction. Journal of Medicinal Chemistry, 2011, 54, 1333-1346.	6.4	81
94	Solid-Phase Synthesis and Biological Evaluation of Joro Spider Toxin-4 fromNephila clavata. Journal of Natural Products, 2011, 74, 483-486.	3.0	8
95	SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation. Pharmacological Reviews, 2011, 63, 585-640.	16.0	702
96	Small Molecules from Spiders Used as Chemical Probes. Angewandte Chemie - International Edition, 2011, 50, 11296-11311.	13.8	19
97	Improving the Stability of \hat{l} ±-Conotoxin AuIB Through N-to-C Cyclization: The Effect of Linker Length on Stability and Activity at Nicotinic Acetylcholine Receptors. Antioxidants and Redox Signaling, 2011, 14, 65-76.	5.4	29
98	Biophysical Characterization of the Complex between Human Papillomavirus E6 Protein and Synapse-associated Protein 97. Journal of Biological Chemistry, 2011, 286, 3597-3606.	3.4	18
99	A Fluorescence Polarization Based Screening Assay for Identification of Small Molecule Inhibitors of the PICK1 PDZ Domain. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 590-600.	1.1	12
100	Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12137-12142.	7.1	69
101	Structure and absolute configuration of ginkgolide B characterized by IR―and VCD spectroscopy. Chirality, 2010, 22, 217-223.	2.6	15
102	Deciphering the Kinetic Binding Mechanism of Dimeric Ligands Using a Potent Plasma-stable Dimeric Inhibitor of Postsynaptic Density Protein-95 as an Example. Journal of Biological Chemistry, 2010, 285, 28252-28260.	3.4	29
103	Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 413-418.	7.1	100
104	Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter. Journal of Biological Chemistry, 2010, 285, 2051-2063.	3.4	91
105	Assessment of Structurally Diverse Philanthotoxin Analogues for Inhibitory Activity on Ionotropic Glutamate Receptor Subtypes: Discovery of Nanomolar, Nonselective, and Use-Dependent Antagonists. Journal of Medicinal Chemistry, 2010, 53, 7441-7451.	6.4	22
106	Structure–activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Organic and Biomolecular Chemistry, 2010, 8, 4281.	2.8	31
107	Location of the Antidepressant Binding Site in the Serotonin Transporter. Journal of Biological Chemistry, 2009, 284, 10276-10284.	3.4	105
108	Rational Design of $\hat{I}\pm$ -Conotoxin Analogues Targeting $\hat{I}\pm7$ Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2009, 284, 9498-9512.	3.4	40

#	Article	IF	Citations
109	Synthesis and Biological Activity of Argiotoxinâ€636 and Analogues: Selective Antagonists for Ionotropic Glutamate Receptors. Angewandte Chemie - International Edition, 2009, 48, 3087-3091.	13.8	31
110	Design and Synthesis of Highly Potent and Plasmaâ€Stable Dimeric Inhibitors of the PSDâ€95–NMDA Receptor Interaction. Angewandte Chemie - International Edition, 2009, 48, 9685-9689.	13.8	55
111	Detecting Protein–Protein Interactions in Living Cells: Development of a Bioluminescence Resonance Energy Transfer Assay to Evaluate the PSD-95/NMDA Receptor Interaction. Neurochemical Research, 2009, 34, 1729-1737.	3.3	7
112	A Sequential Binding Mechanism in a PDZ Domain. Biochemistry, 2009, 48, 7089-7097.	2. 5	46
113	Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chemical Communications, 2009, , 3677.	4.1	95
114	Modified Peptides as Potent Inhibitors of the Postsynaptic Density-95/ <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Interaction. Journal of Medicinal Chemistry, 2008, 51, 6450-6459.	6.4	61
115	From the Selective Serotonin Transporter Inhibitor Citalopram to the Selective Norepinephrine Transporter Inhibitor Talopram: Synthesis and Structureâ 'Activity Relationship Studies. Journal of Medicinal Chemistry, 2008, 51, 3045-3048.	6.4	66
116	Probing the Pharmacophore of Ginkgolides as Glycine Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 1610-1617.	6.4	21
117	Uncompetitive Antagonism of AMPA Receptors:Â Mechanistic Insights from Studies of Polyamine Toxin Derivatives. Journal of Medicinal Chemistry, 2006, 49, 5414-5423.	6.4	42
118	Medicinal Chemistry of Ginkgolides from Ginkgo Biloba. , 2006, , 301-323.		4
119	Design, Synthesis, and Pharmacological Characterization of Polyamine Toxin Derivatives: Potent Ligands for the Pore-Forming Region of AMPA Receptors. ChemMedChem, 2006, 1, 419-428.	3.2	19
120	Protolytic properties of polyamine wasp toxin analogues studied by 13C NMR spectroscopy. Magnetic Resonance in Chemistry, 2006, 44, 1013-1022.	1.9	4
121	Design and synthesis of labeled analogs of PhTX-56, a potent and selective AMPA receptor antagonist. Bioorganic and Medicinal Chemistry, 2005, 13, 5104-5112.	3.0	11
122	Natural products as tools for studies of ligand-gated ion channels. Chemical Record, 2005, 5, 229-239.	5.8	10
123	Polyamine toxins: development of selective ligands for ionotropic receptors. Toxicon, 2005, 45, 249-254.	1.6	55
124	Chemistry and Biology of Terpene Trilactones from Ginkgo Biloba. Angewandte Chemie - International Edition, 2004, 43, 1640-1658.	13.8	190
125	AMPA receptor ligands: Synthetic and pharmacological studies of polyamines and polyamine toxins. Medicinal Research Reviews, 2004, 24, 589-620.	10.5	65
126	Siteâ€Specific Incorporation of Unnatural Amino Acids into Proteins. ChemBioChem, 2004, 5, 909-916.	2.6	50

#	Article	IF	CITATIONS
127	Ginkgolides and Glycine Receptors: A Structure–Activity Relationship Study. Chemistry - A European Journal, 2004, 10, 1507-1518.	3.3	43
128	Synthesis of polyamines and polyamine toxins. An improved alkylation procedure. Tetrahedron Letters, 2004, 45, 7929-7933.	1.4	21
129	Preparation of a tritiated ginkgolide. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5673-5675.	2.2	12
130	Preparation of 7-Substituted Ginkgolide Derivatives:  Potent Platelet Activating Factor (PAF) Receptor Antagonists. Journal of Medicinal Chemistry, 2003, 46, 601-608.	6.4	55
131	Contrasting Actions of Philanthotoxin-343 and Philanthotoxin-(12) on Human Muscle Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2003, 64, 954-964.	2.3	33
132	Terpene Trilactones from Ginkgo biloba Are Antagonists of Cortical Glycine and GABAA Receptors. Journal of Biological Chemistry, 2003, 278, 49279-49285.	3.4	106
133	Ginkgolides:  Selective Acetylations, Translactonization, and Biological Evaluation. Journal of Organic Chemistry, 2002, 67, 4623-4626.	3.2	23
134	Solid-Phase Synthesis of Polyamine Toxin Analogues:Â Potent and Selective Antagonists of Ca2+-Permeable AMPA Receptors. Journal of Medicinal Chemistry, 2002, 45, 5745-5754.	6.4	49
135	Ginkgolide Derivatives for Photolabeling Studies:Â Preparation and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2002, 45, 4038-4046.	6.4	73
136	Solid-Phase synthesis and pharmacological evaluation of analogues of PhTX-12â€"A potent and selective nicotinic acetylcholine receptor antagonist. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1159-1162.	2.2	26
137	A Versatile Method for Solid-Phase Synthesis of Polyamines: Neuroactive Polyamine Toxins as Example. Synthesis, 2001, 2001, 0877-0884.	2.3	30
138	Solid phase synthesis and biological evaluation of enantiomerically pure wasp toxin analogues PhTX-343 and PhTX-12., 2000, 12, 93-102.		22
139	Solid-Phase Synthesis and Biological Evaluation of a Combinatorial Library of Philanthotoxin Analogues. Journal of Medicinal Chemistry, 2000, 43, 4526-4533.	6.4	48
140	Analogues of Neuroactive Polyamine Wasp Toxins That Lack Inner Basic Sites Exhibit Enhanced Antagonism Toward a Muscle-Type Mammalian Nicotinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 1999, 42, 5224-5234.	6.4	42
141	Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme**. Angewandte Chemie, 0, , .	2.0	2