Maurine E Linder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235724/publications.pdf

Version: 2024-02-01

66343 91884 8,407 89 42 69 citations h-index g-index papers 92 92 92 6238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology, 2022, 18, 812-820.	8.0	36
2	Substrate recruitment by zDHHC protein acyltransferases. Open Biology, 2021, 11, 210026.	3.6	40
3	High-Throughput Enzyme Assay for Screening Inhibitors of the ZDHHC3/7/20 Acyltransferases. ACS Chemical Biology, 2021, 16, 1318-1324.	3.4	6
4	Metallo-l ² -lactamase domain-containing protein 2 is S-palmitoylated and exhibits acyl-CoA hydrolase activity. Journal of Biological Chemistry, 2021, 296, 100106.	3.4	3
5	A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature, 2020, 586, 434-439.	27.8	141
6	Purification of Recombinant DHHC Proteins Using an Insect Cell Expression System. Methods in Molecular Biology, 2019, 2009, 179-189.	0.9	1
7	Monitoring RhoGDI Extraction of Lipid-Modified Rho GTPases from Membranes Using Click Chemistry. Methods in Molecular Biology, 2019, 2009, 297-306.	0.9	3
8	Structure and function of DHHC protein <i>S</i> -acyltransferases. Biochemical Society Transactions, 2017, 45, 923-928.	3.4	62
9	SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. ELife, 2017, 6, .	6.0	70
10	Single Particle Tracking in Double Cushioned, Blebbed Supported Lipid Bilayers Enables Studies of Transmembrane Protein Diffusion. Biophysical Journal, 2016, 110, 568a.	0.5	0
11	The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc. Journal of Biological Chemistry, 2015, 290, 29259-29269.	3.4	46
12	Protein S-palmitoylation and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 107-120.	7.4	69
13	Mechanism and Function of DHHC Palmitoyltransferases. FASEB Journal, 2015, 29, 370.3.	0.5	O
14	Abstract B49: Role of RAS palmitoyl-acyltransferase DHHC9 in hematopoiesis and NRAS leukemogenesis. , 2014, , .		0
15	Oligomerization of DHHC Protein S-Acyltransferases. Journal of Biological Chemistry, 2013, 288, 22862-22870.	3.4	31
16	Identification of a Novel Prenyl and Palmitoyl Modification at the CaaX Motif of Cdc42 That Regulates RhoGDI Binding. Molecular and Cellular Biology, 2013, 33, 1417-1429.	2.3	90
17	Mechanism and function of DHHC S-acyltransferases. Biochemical Society Transactions, 2013, 41, 29-34.	3.4	51
18	Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. ELife, 2013, 2, e01293.	6.0	65

#	Article	IF	CITATIONS
19	Mechanism and function of DHHC Sâ€Acyltransferases. FASEB Journal, 2013, 27, 458.1.	0.5	O
20	DHHC Protein S-Acyltransferases Use Similar Ping-Pong Kinetic Mechanisms but Display Different Acyl-CoA Specificities. Journal of Biological Chemistry, 2012, 287, 7236-7245.	3.4	177
21	Exploring Protein Lipidation with Chemical Biology. Chemical Reviews, 2011, 111, 6341-6358.	47.7	107
22	FKBP12 Binds to Acylated H-Ras and Promotes Depalmitoylation. Molecular Cell, 2011, 41, 173-185.	9.7	109
23	Gi/o Signaling and the Palmitoyltransferase DHHC2 Regulate Palmitate Cycling and Shuttling of RGS7 Family-binding Protein. Journal of Biological Chemistry, 2011, 286, 13695-13703.	3.4	28
24	Plasma Membrane Association of p63 Rho Guanine Nucleotide Exchange Factor (p63RhoGEF) Is Mediated by Palmitoylation and Is Required for Basal Activity in Cells. Journal of Biological Chemistry, 2011, 286, 34448-34456.	3.4	21
25	Regulation of G Proteins by Covalent Modification. , 2010, , 1629-1633.		2
26	Lipid-Mediated Localization of Signaling Proteins. , 2010, , 365-371.		0
27	$G\hat{l}^2\hat{l}^3$ Activates GSK3 to Promote LRP6-Mediated \hat{l}^2 -Catenin Transcriptional Activity. Science Signaling, 2010, 3, ra37.	3.6	51
28	Enzymology of DHHCâ€mediated protein palmitoylation. FASEB Journal, 2010, 24, 859.3.	0.5	0
29	Molecular Recognition of the Palmitoylation Substrate Vac8 by Its Palmitoyltransferase Pfa3. Journal of Biological Chemistry, 2009, 284, 17720-17730.	3.4	45
30	Differential palmitoylation of the endosomal SNAREs syntaxin 7 and syntaxin 8. Journal of Lipid Research, 2009, 50, 398-404.	4.2	30
31	2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. Journal of Lipid Research, 2009, 50, 233-242.	4.2	157
32	Analysis of Protein Palmitoylation by Metabolic Radiolabeling Methods. Springer Protocols, 2009, , 1623-1636.	0.3	3
33	Greasy proteins of the neuron. Nature, 2008, 456, 887-888.	27.8	0
34	Palmitoylation: policing protein stability and traffic. Nature Reviews Molecular Cell Biology, 2007, 8, 74-84.	37.0	919
35	Protein lipidation. FEBS Journal, 2007, 274, 5202-5210.	4.7	222
36	Thematic review series: Lipid Posttranslational Modifications. Protein palmitoylation by a family of DHHC protein S-acyltransferases. Journal of Lipid Research, 2006, 47, 1118-1127.	4.2	385

3

#	Article	IF	Citations
37	Purification and characterization of recombinant protein acyltransferases. Methods, 2006, 40, 143-150.	3.8	13
38	Protein palmitoylation. Methods, 2006, 40, 125-126.	3.8	7
39	Biochemical characterization of RGS14: RGS14 activity towards G-protein \hat{l}_{\pm} subunits is independent of its binding to Rap2A. Biochemical Journal, 2006, 394, 309-315.	3.7	18
40	R7BP Augments the Function of RGS7 \hat{A} -G \hat{I}^2 5 Complexes by a Plasma Membrane-targeting Mechanism. Journal of Biological Chemistry, 2006, 281, 28222-28231.	3.4	69
41	Searching for the Protein Acyltransferase of Gpa1. FASEB Journal, 2006, 20, A948.	0.5	0
42	The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. Journal of Cell Biology, 2005, 170, 1091-1099.	5.2	71
43	Palmitoylation regulates plasma membrane–nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. Journal of Cell Biology, 2005, 169, 623-633.	5.2	131
44	DHHC9 and GCP16 Constitute a Human Protein Fatty Acyltransferase with Specificity for H- and N-Ras. Journal of Biological Chemistry, 2005, 280, 31141-31148.	3.4	295
45	The RGS14 GoLoco Domain Discriminates among Gαi Isoforms. Journal of Biological Chemistry, 2004, 279, 46772-46778.	3.4	60
46	Reciprocal Signaling between the Transcriptional Co-Factor Eya2 and Specific Members of the $\hat{Gl}\pm i$ Family. Molecular Pharmacology, 2004, 66, 1325-1331.	2.3	31
47	Model organisms lead the way to protein palmitoyltransferases. Journal of Cell Science, 2004, 117, 521-526.	2.0	90
48	Palmitoylation of Intracellular Signaling Proteins: Regulation and Function. Annual Review of Biochemistry, 2004, 73, 559-587.	11,1	534
49	New Insights into the Mechanisms of Protein Palmitoylation. Biochemistry, 2003, 42, 4311-4320.	2.5	192
50	Lipid-Mediated Localization of Signaling Proteins. , 2003, , 331-334.		0
51	Regulation of G Proteins by Covalent Modification. , 2003, , 585-588.		0
52	Identification of a Ras Palmitoyltransferase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 41268-41273.	3.4	398
53	SNAP-25 Traffics to the Plasma Membrane by a Syntaxin-independent Mechanism. Journal of Biological Chemistry, 2002, 277, 34303-34309.	3.4	36
54	Distinct Sites on G Protein $\hat{l}^2\hat{l}^3$ Subunits Regulate Different Effector Functions. Journal of Biological Chemistry, 2002, 277, 36345-36350.	3.4	43

#	Article	IF	CITATIONS
55	SCH-202676: An Allosteric Modulator of Both Agonist and Antagonist Binding to G Protein-Coupled Receptors. Molecular Pharmacology, 2001, 59, 30-37.	2.3	84
56	Role of the \hat{I}^3 Subunit Prenyl Moiety in G Protein $\hat{I}^2\hat{I}^3$ Complex Interaction with Phospholipase \hat{C}^2 . Journal of Biological Chemistry, 2001, 276, 41797-41802.	3.4	36
57	Enrichment of G-protein Palmitoyltransferase Activity in Low Density Membranes. Journal of Biological Chemistry, 2001, 276, 43300-43304.	3.4	41
58	8 Reversible modification of proteins with thioester-linked fatty acids. The Enzymes, 2001, , 215-240.	1.7	5
59	Lipid-dependent Targeting of G Proteins into Rafts. Journal of Biological Chemistry, 2000, 275, 2191-2198.	3.4	382
60	Dual Lipid Modification Motifs in $G(sub)\hat{l}\pm\langle sub\rangle$ and $G(sub)\hat{l}^3\langle sub\rangle$ Subunits Are Required for Full Activity of the Pheromone Response Pathway in (i) Saccharomyces cerevisiae (i). Molecular Biology of the Cell, 2000, 11, 957-968.	2.1	58
61	RGS4 Binds to Membranes through an Amphipathic α-Helix. Journal of Biological Chemistry, 2000, 275, 18520-18526.	3.4	112
62	Differential effects of acyl-CoA binding protein on enzymatic and non-enzymatic thioacylation of protein and peptide substrates. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1485, 185-198.	2.4	40
63	A G Protein Î ³ Subunit-specific Peptide Inhibits Muscarinic Receptor Signaling. Journal of Biological Chemistry, 1999, 274, 35305-35308.	3.4	36
64	SNAP-25 Is Targeted to the Plasma Membrane through a Novel Membrane-binding Domain. Journal of Biological Chemistry, 1999, 274, 21313-21318.	3.4	102
65	G Protein Selectivity Is a Determinant of RGS2 Function. Journal of Biological Chemistry, 1999, 274, 34253-34259.	3.4	157
66	The Thrombospondin Receptor Integrin-associated Protein (CD47) Functionally Couples to Heterotrimeric Gi. Journal of Biological Chemistry, 1999, 274, 8554-8560.	3.4	150
67	Signalling functions of protein palmitoylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 245-261.	2.4	301
68	SNAP-25 Palmitoylation and Plasma Membrane Targeting Require a Functional Secretory Pathway. Molecular Biology of the Cell, 1998, 9, 585-597.	2.1	174
69	RGS family members: GTPase-activating proteins for heterotrimeric G-protein α-subunits. Nature, 1996, 383, 172-175.	27.8	543
70	G-protein Palmitoyltransferase Activity Is Enriched in Plasma Membranes. Journal of Biological Chemistry, 1996, 271, 7154-7159.	3.4	161
71	Inhibition of an Inward Rectifier Potassium Channel (Kir2.3) by G-protein $\hat{l}^2\hat{l}^3$ Subunits. Journal of Biological Chemistry, 1996, 271, 32301-32305.	3.4	54
72	[25] Palmitoylation of G-protein α subunits. Methods in Enzymology, 1995, 250, 314-330.	1.0	39

#	Article	IF	CITATIONS
73	[20] Myristoylation of G-protein α subunits. Methods in Enzymology, 1994, 237, 254-268.	1.0	109
74	Recombinant G-protein $\hat{l}^2\hat{l}^3$ -subunits activate the muscarinic-gated atrial potassium channel. Nature, 1994, 368, 255-257.	27.8	452
75	[12] Expression of G-protein a subunits in Escherichia coli. Methods in Enzymology, 1994, 237, 146-164.	1.0	230
76	Crystallization and Preliminary Crystallographic Studies of Giα1 and Mutants of Giα1 in the GTP and GDP-bound States. Journal of Molecular Biology, 1994, 238, 630-634.	4.2	50
77	Subtype-Specific Binding of Azidoanilido-GTP by Purified G Protein .alpha. Subunits. Biochemistry, 1994, 33, 6877-6883.	2.5	26
78	Selectivity of the .betaadrenergic receptor among Gs, Gi's, and Go: assay using recombinant .alpha. subunits in reconstituted phospholipid vesicles. Biochemistry, 1991, 30, 10769-10777.	2.5	70
79	[18] Purification of recombinant G1α and Goα proteins from Escherichia coli. Methods in Enzymology, 1991, 195, 202-215.	1.0	20
80	A similar ribosomal protein S6 kinase activity is found in insulin-treated 3T3-L1 cells and chick embryo fibroblasts transformed by Rous sarcoma virus. Biochemical and Biophysical Research Communications, 1986, 137, 702-708.	2.1	13
81	DHHC4. The AFCS-nature Molecule Pages, 0, , .	0.2	0
82	DHHC15. The AFCS-nature Molecule Pages, 0, , .	0.2	0
83	DHHC1. The AFCS-nature Molecule Pages, 0, , .	0.2	0
84	DHHC9. The AFCS-nature Molecule Pages, 0, , .	0.2	0
85	DHHC7. The AFCS-nature Molecule Pages, 0, , .	0.2	0
86	DHHC3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
87	DHHC2. The AFCS-nature Molecule Pages, 0, , .	0.2	0
88	DHHC21. The AFCS-nature Molecule Pages, 0, , .	0.2	0
89	DHHC8. The AFCS-nature Molecule Pages, 0, , .	0.2	0